The Depth of the Atmosphere Evangelista Torricelli (1608–1647) was the first to put forward the idea that we live at the bottom of an ocean of air. (a) Given the value of atmospheric pressure at the surface of the Earth, and the fact that there is zero pressure in the vacuum of space, determine the depth of the atmosphere, assuming that the density of air and the acceleration of gravity are constant. (b) According to this model, what is the atmospheric pressure at the summit of Mt. Everest, 29,029 ft above sea level. (In fact, the density of air and the acceleration of gravity decrease with altitude, so the result obtained here is less than the actual depth of the atmosphere. Still, this is a reasonable first estimate.)
The Depth of the Atmosphere Evangelista Torricelli (1608–1647) was the first to put forward the idea that we live at the bottom of an ocean of air. (a) Given the value of atmospheric pressure at the surface of the Earth, and the fact that there is zero pressure in the vacuum of space, determine the depth of the atmosphere, assuming that the density of air and the acceleration of gravity are constant. (b) According to this model, what is the atmospheric pressure at the summit of Mt. Everest, 29,029 ft above sea level. (In fact, the density of air and the acceleration of gravity decrease with altitude, so the result obtained here is less than the actual depth of the atmosphere. Still, this is a reasonable first estimate.)
The Depth of the Atmosphere Evangelista Torricelli (1608–1647) was the first to put forward the idea that we live at the bottom of an ocean of air. (a) Given the value of atmospheric pressure at the surface of the Earth, and the fact that there is zero pressure in the vacuum of space, determine the depth of the atmosphere, assuming that the density of air and the acceleration of gravity are constant. (b) According to this model, what is the atmospheric pressure at the summit of Mt. Everest, 29,029 ft above sea level. (In fact, the density of air and the acceleration of gravity decrease with altitude, so the result obtained here is less than the actual depth of the atmosphere. Still, this is a reasonable first estimate.)
Helicobacter pylori (H. pylori) is a helically-shaped bacterium that is usually found in the stomach. It burrows through the gastric mucous
lining to establish an infection in the stomach's epithelial cells (see photo). Approximately 90% of the people infected with H. pylori will
never experience symptoms. Others may develop peptic ulcers and show symptoms of chronic gastritis. The method of motility of H.
pylori is a prokaryotic flagellum attached to the back of the bacterium that rigidly rotates like a propeller on a ship. The flagellum is
composed of proteins and is approximately 40.0 nm in diameter and can reach rotation speeds as high as 1.50 x 103 rpm. If the speed
of the bacterium is 10.0 μm/s, how far has it moved in the time it takes the flagellum to rotate through an angular displacement of 5.00
* 10² rad?
Zina Deretsky, National Science
Foundation/Flickr
H. PYLORI CROSSING MUCUS LAYER OF STOMACH
H.pylori Gastric Epithelial
mucin cells
gel
Number
i
318
Units
um
H.pylori…
T1. Calculate what is the received frequency when the car drives away from the radar antenna at a speed v of a) 1 m/s ( = 3.6 km/h), b) 10 m/s ( = 36 km/h), c) 30 m /s ( = 108 km/h) . The radar transmission frequency f is 24.125 GHz = 24.125*10^9 Hz, about 24 GHz. Speed of light 2.998 *10^8 m/s.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.