Concept explainers
Predict/Calculate You step into an elevator holding a glass of water filled to a depth of 7.9 cm. After a moment, the elevator moves upward with constant acceleration, increasing its speed from 0 to 2.4 m/s in 2.9 s. (a) During the period of acceleration, is the pressure exerted on the bottom of the glass greater than, less than, or the same as before the elevator began to move? Explain. (b) Find the change in the pressure exerted on the bottom of the glass as the elevator accelerates.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Chemistry: A Molecular Approach (4th Edition)
Human Anatomy & Physiology (2nd Edition)
Campbell Biology (11th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology in Focus (2nd Edition)
Human Physiology: An Integrated Approach (8th Edition)
- Suppose you hit a steel nail with a 0.500-kg hammer, initially moving at 15.0 m/s and brought to rest in 2.80 mm. (a) What average force is exerted on the nail? (b) How much is the nail compressed if it is 2.50 mm in diameter and 6.00-cm long? (c) What pressure is created on the 1.00-mm-diameter tip of the nail?arrow_forwardThe human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of mm of H2O because body fluids, including the cerebrospinal fluid, typically have nearly the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap. A hollow tube is inserted into the spinal column, and the height lo which the fluid rises is observed, as shown in Figure P9.83. If the fluid ruses to a height of 160. mm, we write its gauge pressure as 160. mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Sometimes it is necessary to determine whether an accident victim has suffered a crushed vertebra that is blocking the flow of cerebrospinal fluid in the spinal column. In other cases, a physician may suspect that a tumor or other growth is blocking the spinal column and inhibiting the flow of cerebrospinal fluid. Such conditions ran be investigated by means of the Queckensted test. In this procedure, the veins in the patients neck are compressed lo make the blood pressure rise in the brain. The increase in pressure in the blood vessels is transmitted to the cerebrospinal fluid. What should be the normal effect on the height of the fluid in the spinal tap? (c) Suppose compressing the veins had no effect on the level of the fluid. What might account for this phenomenon?arrow_forwardA 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m 2.00 m 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and raft. (b) Write Newtons second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0.) (c) Calculate the numeric value for the buoyancy, B. (Seawater has density 1 025 kg/m3.) (d) Using the value of B and the weight w of the survivor, calculate the weight w, of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant, force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?arrow_forward
- In about 1657. Otto von Guericke, inventor of the air pump, evacuated a sphere made of two brass hemispheres (Fig. P9.89). Two teams of eight horses each could pull the hemispheres apart only on some trials and then with greatest difficulty, with the resulting sound likened to a cannon firing. Find the force F required to pull the thin-walled evacuated hemispheres apart in terms of R, the radius of the hemispheres, P the pressure inside the hemispheres, and atmospheric pressure P0. Figure P9.89arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward(a) How high will water rise in a glass capillary tube with a 0.500-mm radius? (b) How much gravitational potential energy does the water gain? (c) Discuss possible sources of this energy.arrow_forward
- A manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forwardA spherical weather balloon is filled with hydrogen until its radius is 3.00 m. Its total mass including the instruments it carries is 15.0 kg. (a) Find the buoyant force acting on the balloon, assuming the density of air is 1.29 kg/m3. (b) What is the net force acting on the balloon and its instruments after the balloon is released from the ground? (c) Why does the radius of the balloon tend to increase as it rises to higher altitude?arrow_forwardThe human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of millimeters of H2O because body fluids, including the cerebrospinal fluid, typically have the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap as illustrated in Figure P14.8. A hollow tube is inserted into the spinal column, and the height to which the fluid rises is observed. If the fluid rises to a height of 160 mm, we write its gauge pressure as 160 mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Some conditions that block or inhibit the flow of cerebrospinal fluid can be investigated by means of Queckenstedts test. In this procedure, the veins in the patients neck are compressed to make the blood pressure rise in the brain, which in turn should be transmitted to the cerebrospinal fluid. Explain how the level of fluid in the spinal tap can be used as a diagnostic tool for the condition of the patients spine. Figure P14.8arrow_forward
- A uniform wooden board of length L and mass M is hinged at the top of a vertical wall of a container partially filled with a certain liquid (Fig. P15.81). (If there were no liquid in the container, the board would hang straight down.) Three-fifths of the length of the board is submerged in the liquid when the board is in equilibrium. Find the ratio of the densities of the liquid and the board.arrow_forwardThe hull of an experimental boat is to be lifted above the water by a hydrofoil mounted below its keel as shown in Figure P14.48. The hydrofoil has a shape like that of an airplane wing. Its area projected onto a horizontal surface is A. When the boat is towed at sufficiently high speed, water of density moves in streamline flow so that its average speed at the top of the hydrofoil is n times larger than its speed vb below the hydrofoil. (a) Ignoring the buoyant force, show that the upward lift force exerted by the water on the hydrofoil has a magnitude F=12(n21)vb2A (b) The boat has mass M. Show that the liftoff speed is given by v=2Mg(n21)A Figure P14.4 8arrow_forwardCalculate the maximum force in newtons exerted by the blood on an aneurysm, or ballooning, in a major artery, given the maximum blood pressure for this person is 150 mm Hg and the effective area of the aneurysm is 20.0 cm2. Note that this force is great enough to cause further enlargement and subsequently greater force on the ever-thinner vessel wall.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning