Le Chatelier noted that many industrial processes of his time could be improved by an understanding of chemical equilibria. For example, the reaction of iron oxide with carbon monoxide was used to produce elemental iron and CO2 according to the reaction
Fe2O3 (g) + 3 CO (g) ⇌ 2Fe(s) + 3CO2 (g)
Even in Le Chatelier's time, it was noted that a great deal of CO was wrote,”Because this incomplete reaction was thought to be due to an insufficiently prolonged contact between carbon monoxide and the iron or [oxide], the dimensions of the furnaces have been increased. In England, they have been made as high as 30 m. But the proportion of carbon monoxide escaping has not diminished, thus demonstrating, by an experiment costing several hundred thousand francs, that the reduction of iron oxide by carbon monoxide is a limited reaction. Acquaintance with the laws of
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Test Prep Series for AP Chemistry for Chemistry: The Central Science 14th ed AP
- For the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forwardSuppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardWhat is the law of mass action? Is it true that the value of K depends on the amounts of reactants and products mixed together initially? Explain. Is it true that reactions with large equilibrium constant values are very fast? Explain. There is only one value of the equilibrium constant for a particular system at a particular temperature, but there is an infinite number of equilibrium positions. Explain.arrow_forward
- At 2300 K the equilibrium constant for the formation of NO(g) is 1.7 103. N2(g) + O2(g) 2 NO(g) (a) Analysis shows that the concentrations of N2 and O2 are both 0.25 M, and that of NO is 0.0042 M under certain conditions. Is the system at equilibrium? (b) If the system is not at equilibrium, in which direction does the reaction proceed? (c) When the system is at equilibrium, what are the equilibrium concentrations?arrow_forwardThe atmosphere consists of about 80% N2 and 20% O2, yet there are many oxides of nitrogen that are stable and can be isolated in the laboratory. (a) Is the atmosphere at chemical equilibrium with respect to forming NO? (b) If not, why doesnt NO form? If so, how is it that NO can be made and kept in the laboratory for long periods?arrow_forwardWrite a chemical equation for an equilibrium system that would lead to the following expressions (ad) for K. (a) K=(PH2S)2 (PO2)3(PSO2)2 (PH2O)2 (b) K=(PF2)1/2 (PI2)1/2PIF (c) K=[ Cl ]2(Pcl2)[ Br ]2 (d) K=(PNO)2 (PH2O)4 [ Cu2+ ]3[ NO3 ]2 [ H+ ]8arrow_forward
- Is a system at equilibrium if the rate constants of the forward and reverse reactions are equal?arrow_forwardShow that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation KI(aq)+I2(aq)KI3(aq) give the same expression for the reaction quotient. KI3 is composed of the ions K+ and I3-.arrow_forwardCyclohexane, C6H12, a hydrocarbon, can isomerize or change into methylcyclopentane, a compound of the same formula (C5H9CH3) but with a different molecular structure. sssss The equilibrium constant has been estimated to be 0.12 at 25 C. If you had originally placed 0.045 mol of cyclohexane in a 2.8-L flask, what would be the concentrations of cyclohexane and methylcyclopentane when equilibrium is established?arrow_forward
- The equilibrium constant for the dissociation of iodine molecules to iodine atoms I2(g) 2 I(g) is 3.76 103 at 1000 K. Suppose 0.105 mol of I2 is placed in a 12.3-L flask at 1000 K. What are the concentrations of I2 and I when the system comes to equilibrium?arrow_forward1. Graphite and carbon dioxide are kept at constant volume at 1000 K until the reaction C(graphite) + CO2(g) ⇄ 2 CO(g) has come to equilibrium. At this temperature, kc = 0.021. The initial concentration of CO2 is 0.012 mol/L. Calculate the equilibrium concentration of CO. 0.012 M 0.011 M 0.0057 Marrow_forwardBecause carbonic acid undergoes a second ionization, the student in Exercise 12.39 is concerned that the hydrogen ion concentration she calculated is not correct. She looks up the equilibrium constant for the reaction HCO,-(aq) «=* H+(aq) + COf'(aq) Upon finding that the equilibrium constant for this reaction is 4.8 X 10“H, she decides that her answer in Exercise 12.39 is correct. Explain her reasoning. A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H,CO,(aq) 5=6 H+(aq) + HCO,'(aq) K = 4.4 X 10'7She starts with 0.1000 A1 carbonic acid. W hat are the concentrations of all species at equilibrium?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning