Test Prep Series for AP Chemistry for Chemistry: The Central Science 14th ed AP
14th Edition
ISBN: 9780134661483
Author: Edward L Waterman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15.5, Problem 15.8.1PE
Practice Exercise 1
In Section 15.1, we discussed the equilibrium between N2O4(g) and NO2(g). Lets return to that equation in a quantitative example. When 9.2 g of frozen N2O4 is added to a 0.50 L reaction vessel that is heated to 400 k and allowed to come to equilibrium, the concentration of N2O4 is determined to be 0.057 M. Given this information, what is the value of Kc for the reaction N2O4(g) ⇌ 2NO2(g) at 400k?
- 0.23
- 0.36
- 0.31
- 1.4
- 2.5
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Test Prep Series for AP Chemistry for Chemistry: The Central Science 14th ed AP
Ch. 15.2 - Prob. 15.1.1PECh. 15.2 - Prob. 15.1.2PECh. 15.2 - Prob. 15.2.1PECh. 15.2 - Prob. 15.2.2PECh. 15.3 - Prob. 15.3.1PECh. 15.3 - Practice Exercise 2 For the reaction H2 (g) + I2...Ch. 15.3 - Prob. 15.4.1PECh. 15.3 - Prob. 15.4.2PECh. 15.4 - Prob. 15.5.1PECh. 15.4 - Prob. 15.5.2PE
Ch. 15.4 - Practice Exercise 1
If 8.0 g of NH4HS(s)...Ch. 15.4 - Prob. 15.6.2PECh. 15.5 - Practice Exercise 1
A mixture of gaseous sulfur...Ch. 15.5 - Prob. 15.7.2PECh. 15.5 - Practice Exercise 1 In Section 15.1, we discussed...Ch. 15.5 - Practice Exercise 2
The gaseous compound BrCl...Ch. 15.6 - Prob. 15.9.1PECh. 15.6 - Practice Exercise 2 At 1000 k, the value of Kp for...Ch. 15.6 - Prob. 15.10.1PECh. 15.6 - Prob. 15.10.2PECh. 15.6 - Practice Exercise 1 For the equilibrium Br2(g) +...Ch. 15.6 - Prob. 15.11.2PECh. 15.7 - Practice Exercise 1 For the reaction 4 NH3(g) + 5...Ch. 15.7 - Prob. 15.12.2PECh. 15 - Prob. 1DECh. 15 - Based on the following energy profile, predict...Ch. 15 - 15.2 The following diagrams represent a...Ch. 15 - Prob. 3ECh. 15 - Prob. 4ECh. 15 - Prob. 5ECh. 15 - 15.6 Ethene (C2H4) reacts with healogens (X2) by...Ch. 15 - When lead(IV) oxide is heated above 300 O C, it...Ch. 15 - Prob. 8ECh. 15 - The reactin A2(g) + B(g) + A(g) + AB(g) has an...Ch. 15 - Prob. 10ECh. 15 - Prob. 11ECh. 15 - The following graph represents the yield of the...Ch. 15 - Suppose that the gas-phase reactions A B and B A...Ch. 15 - Prob. 14ECh. 15 - Prob. 15ECh. 15 - Write the expression for KC for the following...Ch. 15 - When the following reaction come to equilibrium,...Ch. 15 - Prob. 18ECh. 15 - Prob. 19ECh. 15 - Prob. 20ECh. 15 - If Kc = 0.042 for PC13(g) + C12 (g) PC15 (g) at...Ch. 15 - Prob. 22ECh. 15 - 15.23 The equilibrium constant for the...Ch. 15 - Prob. 24ECh. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - The following equilibria were attained at 823 K:...Ch. 15 - Consider the equilibrium N2(g) + O2(g) + Br2(g) 2...Ch. 15 - Mercury(I) oxide decomposes into elemental mercury...Ch. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Prob. 32ECh. 15 - Prob. 33ECh. 15 - Phosphorus trichloride gas and chlorine gas react...Ch. 15 - A mixture of 0.10 mol of NO, 0.050 mol of H2, and...Ch. 15 - Prob. 36ECh. 15 - A mixture of 0.2000 mol of CO2, 0.1000 mol of H2,...Ch. 15 - 15.38 A flask is charged with 1.500 atm of N2O4(g)...Ch. 15 - Prob. 39ECh. 15 - Prob. 40ECh. 15 - a. If QC KC, in which direction will a reaction...Ch. 15 - Prob. 42ECh. 15 - At 100 OC , the equilibrium constant for the...Ch. 15 - 15.44 As shown in Table 15.2, KP for the...Ch. 15 - At 100 C, K = 0.078 for the reaction SO2Cl2 (g) ...Ch. 15 - Prob. 46ECh. 15 - Prob. 47ECh. 15 - Prob. 48ECh. 15 - At 800 k, the equilibrium constant for I2 (g) ...Ch. 15 - Prob. 50ECh. 15 - At 2000 OC, the equilibrium constant for the...Ch. 15 - For the equilibrium Br2 (g) + Cl2 (g) 2BrCl(g) At...Ch. 15 - At 373 k, Kp = 0.416 for the equilibrium 2NOBr (g)...Ch. 15 - At 218 oC, KC= 1.2 X 10-4 for the equilibrium NH4...Ch. 15 - Prob. 55ECh. 15 - At 80 oC, K =1.87 X 10-3 for the reaction PH3 BCl3...Ch. 15 - Prob. 57ECh. 15 - Prob. 58ECh. 15 - Prob. 59ECh. 15 - Prob. 60ECh. 15 - Consider the following equilibrium for which H<0...Ch. 15 - Prob. 62ECh. 15 - 15.63 How do the following changes affect the...Ch. 15 - Prob. 64ECh. 15 - Consider the following equilibrium between oxides...Ch. 15 - Prob. 66ECh. 15 - Ozone, O3, decomposes to molecular oxygen in the...Ch. 15 - Prob. 68ECh. 15 - Prob. 69ECh. 15 - 15.70 True or false: When the temperature of an...Ch. 15 - Prob. 71AECh. 15 - Prob. 72AECh. 15 - 15.73 A mixture of CH4 and H2O is passed over a...Ch. 15 - Prob. 74AECh. 15 - Prob. 75AECh. 15 - Prob. 76AECh. 15 - Prob. 77AECh. 15 - Prob. 78AECh. 15 - Prob. 79AECh. 15 - For the equilibrium PH3BCI3 (s) PH3 (g) + BCI3...Ch. 15 - Prob. 81AECh. 15 - Prob. 82AECh. 15 - Prob. 83AECh. 15 - At 900 o C, Kc = 0.0108 for the reaction CaCO3(g) ...Ch. 15 - Prob. 85AECh. 15 - The equilibrium constant Kc for C(s) +CO2 2CO(g)...Ch. 15 - Prob. 87AECh. 15 - Le Chatelier noted that many industrial processes...Ch. 15 - Prob. 89AECh. 15 - Prob. 90AECh. 15 - [15.91] An equilibrium mixture of H2, I2, and HI...Ch. 15 - Consider the hypothetical reaction A(g) + 2B(g) 2...Ch. 15 - Prob. 93AECh. 15 - Prob. 94AECh. 15 - Prob. 95IECh. 15 - The following equilibria were measured at 823 K:...Ch. 15 - Prob. 97IECh. 15 - Prob. 98IECh. 15 - At 800 K, the equilibrium constant for the...Ch. 15 - Prob. 100IECh. 15 - Prob. 101IECh. 15 - Prob. 102IE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 1’he reaction in Exercise 12.33 was repeated. This time, the reaction began when only NO was injected into the reaction container. 110.200 mol L_l NO was injected, what were the equilibrium concentrations of all species? The following reaction establishes equilibrium at 2000 K: N2(g) + O2(g) ^2 NO K = 4.1 X 10~4 If the reaction began with 0.100 mol L-1 of N2 and 0.100 mol L"' ofO2, what were the equilibrium concentrations of all species?arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardWrite the K_, expression for each of the following equilih ria for dissolution of the salt in water. Agl(s) *=* Ag+(aq) + I"(aq) Phl,(s)«=± Pb’+(aq) + 2 r(aq) Hg?L «=* Hg<+(aq) + 2 I_(aq) Cu(IO,)2 *=* Ctr+(aq) + 2 IO,-(aq)arrow_forward
- The experiment in Exercise 12.33 was redesigned so that the reaction started with 0.15 mol each of N2 and O2 being injected into a 1.0-L container at 2500 K. The equilibrium constant at 2500 K is 3.6 X 10“’. What was the composition of the reaction mixture after equilibrium was attained? The following reaction establishes equilibrium at 2000 K: N2(g) + O2(g) *2 2 NO K = 4.1 X IO-4 If the reaction began with 0.100 mol L-1 of N2 and 0.100 mol L-’ ofO2, what were the equilibrium concentrations of all species?arrow_forwardIn a given experiment, 5.2 moles of pure NOCl was placed in an otherwise empty 2.0-L container. Equilibrium was established by the following reaction: 2NOCl(g)2NO(g)+Cl2(g)K=1.6105 a. Using numerical values for the concentrations in the Initial row and expressions containing the variable x in both the Change and Equilibrium rows, complete the following table summarizing what happens as this reaction reaches equilibrium. Let x = the concentration of Cl2 that is present at equilibrium. b. Calculate the equilibrium concentrations for all species.arrow_forwardFor the reactionH2(g)+I2(g)2HI(g), consider two possibilities: (a) you mix 0.5 mole of each reactant. allow the system to come to equilibrium, and then add another mole of H2 and allow the system to reach equilibrium again. or (b) you mix 1.5 moles of H2 and 0.5 mole of I2 and allow the system to reach equilibrium. Will the final equilibrium mixture be different for the two procedures? Explain.arrow_forward
- Describe a nonchemical system that is in equilibrium, and explain how the principles of equilibrium apply to the system.arrow_forwardAgain the experiment in Exercise 12.33 was redesigned. This time, 0.15 mol each of N, and O2 was injected into a 5.0-L container at 2500 K, at which the equilibrium constant is 3.6 X 10-?. What was the composition of the reaction mixture at equilibrium? l'he following reaction establishes equilibrium at 2000 K: N2(g) + O2(g) *2 2 NO K = 4.1 X IO-4 If the reaction began with 0.100 mol L-1 of N2 and 0.100 mol L-’ ofO2, what were the equilibrium concentrations of all species?arrow_forwardA mixture of N2, H2, and NH3 is at equilibrium [according to the equationN2(g)+3H2(g)2NH3(g)] as depicted below: The volume is suddenly decreased (by increasing the external pressure) and a new equilibrium is established as depicted below: a. If the volume of the final equilibrium mixture is 1.00 L, determine the value of the equilibrium constant, K. for the reaction. Assume temperature is constant. b. Determine the volume of the initial equilibrium mixture assuming a final equilibrium volume of 1.00 L and assuming a constant temperature.arrow_forward
- For a typical equilibrium problem, the value of K and the initial reaction conditions are given for a specific reaction, and you are asked to calculate the equilibrium concentrations. Many of these calculations involve solving a quadratic or cubic equation. What can you do to avoid solving a quadratic or cubic equation and still come up with reasonable equilibrium concentrations?arrow_forwardHeating a metal carbonate leads to decomposition. BaCO3(s) BaO(s) + CO2(g) Predict the effect on the equilibrium of each change listed below. Answer by choosing (i) no change, (ii) shifts left or (iii) shifts right. (a) add BaCO3 (b) add CO2 (c) add BaO (d) raise the temperature (e) increase the volume of the flask containing the reactionarrow_forwardWrite equilibrium expressions for each of the following heterogeneous equilibria. CaCO,(s) ** Ca2+(aq) + COf "(aq) AgCl(s) «=* Ag+(aq) + Cl_(aq) Mg5(PO4)2(s) «=* 3 Mg2+(aq) + 2 PO4J’(aq) Zn(s) + Cu*+(aq) «=* Cu(s) + Zn2+(aq)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY