Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 87P
To determine
To find
a) Rotational inertia (
b) Torsion constant (
c) Angular frequency (
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A flat uniform circular disk has a mass of 3.00 kg and a radius of 70.0 cm. It is suspended in a horizontal plane by a vertical wire attached to its center. If the disk is rotated 2.50 rad about the wire, a torque of 0.0600 Nm is required to maintain that orientation. Calculate (a) the rotational inertia of the disk about the wire, (b) the torsion constant, and (c) the angular frequency of this torsion pendulum when it is set oscillating.
A uniform, solid metal disk of mass 6.50 kg and diameter 24.0 cm hangs in a horizontal plane,
supported at its center by a vertical metal wire. You find that it requires a horizontal force of 4.23 N
tangent to the rim of the disk to turn it by 3.34°, thus twisting the wire. You now remove this force and
release the disk from rest.
(a) What is the torsion constant for the metal wire?
(b) What are the frequency and period of the torsional oscillations of the disk?
(c) Write the equation of motion for θ(t) for the disk.
The balance wheel of a watch oscillates with angular amplitude 1.3ä rad and period 0.82 s. Find (a) the maximum angular speed of the
wheel, (b) the angular speed of the wheel at displacement 1.3r/2rad, and (c) the magnitude of the angular acceleration at
displacement 1.3r/4 rad.
(a) Number
i
Units
(b) Number
Units
(c) Number
i
Units
Chapter 15 Solutions
Fundamentals of Physics Extended
Ch. 15 - Which of the following describe for the SHM of...Ch. 15 - The velocity vt of a particle undergoing SHM is...Ch. 15 - The acceleration at of a particle undergoing SHM...Ch. 15 - Which of the following relationships between the...Ch. 15 - You are to complete Fig. 15-22a so that it is a...Ch. 15 - You are to complete Fig. 15-23a so that it is a...Ch. 15 - Figure 15-24 shows the xt curves for three...Ch. 15 - Figure 15-25 shows plots of the kinetic energy K...Ch. 15 - Figure 15-26 shows three physical pendulums...Ch. 15 - You are to build the oscillation transfer device...
Ch. 15 - In Fig. 15-28, a springblock system is put into...Ch. 15 - Figure 15-29 gives, for three situations, the...Ch. 15 - An object undergoing simple harmonic motion takes...Ch. 15 - A 0.12 kg body undergoes simple harmonic motion of...Ch. 15 - What is the maximum acceleration of a platform...Ch. 15 - An automobile can be considered to be mounted on...Ch. 15 - SSM In an electric shaver, the blade moves back...Ch. 15 - A particle with a mass of 1.00 1020 kg is...Ch. 15 - SSM A loudspeaker produces a musical sound by...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - The position function x = 6.0 m cos3 rad/st /3...Ch. 15 - An oscillating blockspring system takes 0.75 s to...Ch. 15 - In Fig. 15-31, two identical springs of spring...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - SSM An oscillator consists of a block of mass...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - SSM Two particles oscillate in simple harmonic...Ch. 15 - Two particles execute simple harmonic motion of...Ch. 15 - ILW An oscillator consists of a block attached to...Ch. 15 - GO At a certain harbor, the tides cause the ocean...Ch. 15 - A block rides on a piston a squat cylindrical...Ch. 15 - GO Figure 15-33a is a partial graph of the...Ch. 15 - ILW In Fig. 15-31, two springs are attached to a...Ch. 15 - GO Figure 15-34 shows block 1 of mass 0.200 kg...Ch. 15 - SSM WWW A block is on a horizontal surface a shake...Ch. 15 - In Fig. 15-35, two springs are joined and...Ch. 15 - GO In Fig. 15-36, a block weighing 14.0 N, which...Ch. 15 - GO In Fig. 15-37, two blocks m = 1.8 kg and M = 10...Ch. 15 - SSM When the displacement in SHM is one-half the...Ch. 15 - Figure 15-38 gives the one-dimensional potential...Ch. 15 - SSM Find the mechanical energy of a blockspring...Ch. 15 - An oscillating blockspring system has a mechanical...Ch. 15 - ILW A 5.00 kg object on a horizontal frictionless...Ch. 15 - Figure 15-39 shows the kinetic energy K of a...Ch. 15 - GO A block of mass M = 5.4 kg, at rest on a...Ch. 15 - GO In Fig. 15-41, block 2 of mass 2.0 kg...Ch. 15 - A 10 g particle undergoes SHM with an amplitude of...Ch. 15 - If the phase angle for a blockspring system in SHM...Ch. 15 - GO A massless spring hangs from the ceiling with a...Ch. 15 - A 95 kg solid sphere with a 15 cm radius is...Ch. 15 - SSM WWW The balance wheel of an old-fashioned...Ch. 15 - ILW A physical pendulum consists of a meter stick...Ch. 15 - SSM In Fig. 15-42, the pendulum consists of a...Ch. 15 - Suppose that a simple pendulum consists of a small...Ch. 15 - a If the physical pendulum of Fig. 15-13 and the...Ch. 15 - A physical pendulum consists of two meter-long...Ch. 15 - A performer seated on a trapeze is swinging back...Ch. 15 - A physical pendulum has a center of oscillation at...Ch. 15 - In Fig. 15-44, a physical pendulum consists of a...Ch. 15 - GO A rectangular block, with face lengths a = 35...Ch. 15 - GO The angle of the pendulum of Fig. 15-11b is...Ch. 15 - Prob. 50PCh. 15 - GO In Fig. 15-46, a stick of length L = 1.85 m...Ch. 15 - GO The 3.00 kg cube in Fig. 15-47 has edge lengths...Ch. 15 - SSM ILW In the overhead view of Fig. 15-48, a long...Ch. 15 - Prob. 54PCh. 15 - GO A pendulum is formed by pivoting a long thin...Ch. 15 - In Fig. 15-50: a 2.50 kg disk of diameter D = 42.0...Ch. 15 - The amplitude of a lightly damped oscillator...Ch. 15 - For the damped oscillator system shown in Fig....Ch. 15 - SSM WWW For the damped oscillator system shown in...Ch. 15 - The suspension system of a 2000 kg automobile sags...Ch. 15 - For Eq. 15-45, suppose the amplitude xm is given...Ch. 15 - Hanging from a horizontal beam are nine simple...Ch. 15 - A. 1000 kg car carrying four 82 kg people travels...Ch. 15 - Although California is known for earthquakes, is...Ch. 15 - A loudspeaker diaphragm is oscillating in simple...Ch. 15 - A uniform spring with k = 8600 N/m is cut into...Ch. 15 - GO In Fig. 15-51, three 10, 000 kg ore cars are...Ch. 15 - A 2.00 kg block hangs from a spring. A 300 g body...Ch. 15 - SSM In the engine of a locomotive, a cylindrical...Ch. 15 - GO A wheel is free to rotate about its fixed axle....Ch. 15 - A 50.0 g stone is attached to the bottom of a...Ch. 15 - A uniform circular disk: whose radius R is 12.6 cm...Ch. 15 - SSM A vertical spring stretches 9.6 cm when a 1.3...Ch. 15 - A massless spring with spring constant 19 N/m...Ch. 15 - A 4.00 kg block is suspended from a spring with k...Ch. 15 - A 55.0 g block oscillates in SHM on the end of a...Ch. 15 - Figure 15-53 gives the position of a 20 g block...Ch. 15 - Figure 15-53 gives the position xt of a block...Ch. 15 - Figure 15-54 shows the kinetic energy K of a...Ch. 15 - A block is in SHM on the end of a spring, with...Ch. 15 - A simple harmonic oscillator consists of a 0.50 kg...Ch. 15 - A simple pendulum of length 20 cm and mass 5.0 g...Ch. 15 - The scale of a spring balance that reads from 0 to...Ch. 15 - A 0.10 kg block oscillates back and forth along a...Ch. 15 - The end point of a spring oscillates with a period...Ch. 15 - The tip of one prong of a tuning fork undergoes...Ch. 15 - Prob. 87PCh. 15 - A block weighing 20 N oscillates at one end of a...Ch. 15 - A 3.0 kg particle is in simple harmonic motion in...Ch. 15 - A particle executes linear SHM with frequency 0.25...Ch. 15 - SSM What is the frequency of a simple pendulum 2.0...Ch. 15 - A grandfather clock has a pendulum that consists...Ch. 15 - A 4.00 kg block hangs from a spring, extending it...Ch. 15 - What is the phase constant for SMH with at given...Ch. 15 - An engineer has an odd-shaped 10 kg object and...Ch. 15 - A spider can tell when its web has captured, say,...Ch. 15 - A torsion pendulum consists of a metal disk with a...Ch. 15 - When a 20 N can is hung from the bottom of a...Ch. 15 - For a simple pendulum, find the angular amplitude...Ch. 15 - In Fig. 15-59, a solid cylinder attached to a...Ch. 15 - SSM A 1.2 kg block sliding on a horizontal...Ch. 15 - A simple harmonic oscillator consists of an 0.80...Ch. 15 - A block sliding on a horizontal frictionless...Ch. 15 - A damped harmonic oscillator consists of a block m...Ch. 15 - A block weighing 10.0 N is attached to the lower...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - The vibration frequencies of atoms in solids at...Ch. 15 - Figure 15-61 shows that if we hang a block on the...Ch. 15 - The physical pendulum in Fig. 15-62 has two...Ch. 15 - A common device for entertaining a toddler is a...Ch. 15 - A 2.0 kg block executes SHM while attached to a...Ch. 15 - In Fig. 15-64, a 2500 kg demolition ball swings...Ch. 15 - The center of oscillation of a physical pendulum...Ch. 15 - A hypothetical large slingshot is stretched 2.30 m...Ch. 15 - What is the length of a simple pendulum whose full...Ch. 15 - A 2.0 kg block is attached to the end of a spring...
Knowledge Booster
Similar questions
- The angular position of a pendulum is represented by the equation = 0.032 0 cos t, where is in radians and = 4.43 rad/s. Determine the period and length of the pendulum.arrow_forwardA 95 kg solid sphere with a 15 cm radius is suspended by a vertical wire. A torque of 0.20 Nm is required to rotate the sphere through an angle of 0.85 rad and then maintain that orientation. What is the period of the oscillations that result when the sphere is then released?arrow_forwardA 76 kg solid sphere with a 16 cm radius is suspended by a vertical wire. A torque of 0.56 N·m is required to rotate the sphere through an angle of 0.67 rad and then maintain that orientation. What is the period of the oscillations that result when the sphere is then released?arrow_forward
- The balance wheel of a watch oscillates with angular amplitude 0.59?0.59π rad and period 0.18 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement 0.59?/20.59π/2 rad, and (c) the magnitude of the angular acceleration at displacement 0.59?/40.59π/4 rad.arrow_forward100 In Fig. 15-59, a solid cylinder attached to a horizontal spring (k = 3.00 N/m) rolls without slipping along a horizontal surface. If the sys- tem is released from rest when the м oo000d 00000 Figure 15-59 Problem 100. spring is stretched by 0.250 m, find (a) the translational kinetic energy and (b) the rotational kinetic energy of the cylinder as it passes through the equilibrium position. (c) Show that under these condi- tions the cylinder's center of mass executes simple harmonic mo- tion with period ЗМ T = 27 2k where M is the cylinder mass. (Hint: Find the time derivative of the total mechanical energy.)arrow_forward1.25 rad/s A simple pendulum is made of a 50 cm-string and a bob of mass m. At t- 0, the pendulum is at its equilibrium position and is given an initial velocity v = 0.1 m/s. The maximum angular speed, O'max, is. O 0.1 rad/s 0.8 rad/s O 0.2 rad/s O 0.4 rad/s O 0.05 rad/s tansion ferce T. is given by the wavearrow_forward
- A simple pendulum consists of a 0.8-kg bob connected to a massless inextensible cord with a length L = 1.4 m. The bob is set into motion and its angular displacement is given by 0(t) = 0.11cos(wt), where O is in radians and t is in seconds. Take g = 9.8 m/s^2, determine the mechanical energy of this %3D pendulum. 0.066 J 0.052 J O 0.090 J 0.085 J 0.046 J A traveling wave on a taut string with a tension force T is given by the wave function: y(x.t) = 0.1sin(4x+100t), where x and y are in meters and t is in seconds. The linear mi dancity of the string ieu=01Ko/m If the tension is multiplied byarrow_forwardA simple pendulum consists of a 0.8-kg bob connected to a massless inextensible cord with a length L = 1.1 m. The bob is set into motion and its angular displacement is given by 0(t) = 0.11cos(wt), where e is in radians and t is in seconds. Take g = 9.8 m/s^2, determine the mechanical energy of this %3D pendulum. 0.090 J 0.066 J O0.052 J O 0.046 J O 0.085 J Page 2 ofarrow_forwardA simple pendulum consists of a 0.8-kg bob connected to a massless inextensible cord with a length L = 1.1 m. The bob is set into motion and its angular displacement is given by 0(t) = 0.11cos(wt), where 0 is in radians and t is in seconds. Take g = 9.8 m/s^2, determine the mechanical energy of this %3D pendulum. 0.046 J 0.052 J 0.066 J 0.085 J 0.090 J A traveling wave on a taut string with a tension force Tis given by the wave function: y(x.t) = 0.1sin(4x+100t), where x and y are in meters and t is in seconds. Learn How toarrow_forward
- The pendulum in the figure consists of a uniform disk with radius r = 15.0 cm and mass 880 g attached to a uniform rod with length L = 570 mm and mass 270 g. (a) Calculate the rotational inertia of the pendulum about the pivot point. (b) What is the distance between the pivot point and the center of mass of the pendulum? (c) Calculate the period of oscillation. L.arrow_forwardA pendulum is constructed from a heavy metal rod and a metal disk, both of uniform mass density. The center of the disk is bolted to one end of the rod, and the pendulum hangs from the other end of the rod. The rod has a mass of 1.4 kg and a length of L = 44.0 cm. The disk has a m = Axis mass of M = 5.6 kg and a radius of R = 22.0 cm. The m acceleration due to gravity is g = 9.8 m/s². L The pendulum is held with the rod horizontal and then released. What is the magnitude of its angular acceleration M a at the moment of release?arrow_forwardanswer in paper please. Book reference : university physics with modern physics 13th editionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning