
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 39P
SSM WWW The balance wheel of an old-fashioned watch oscillates with angular amplitude π rad and period 0.500 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed at displacement π/2 rad, and (c) the magnitude of the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
RT = 4.7E-30
18V
IT = 2.3E-3A+
12
38Ω
ли
56Ω
ли
r5
27Ω
ли
r3
28Ω
r4
> 75Ω
r6
600
0.343V
75.8A
Now figure out how much current in going through the r4
resistor.
|4 =
unit
And then use that current to find the voltage drop across the r
resistor.
V4
=
unit
7
Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1
and x² + y²+z² = 4. Hint: use spherical polar coordinates.
ганм
Two long, straight wires are oriented perpendicular to the page,
as shown in the figure(Figure 1). The current in one wire is
I₁ = 3.0 A, pointing into the page, and the current in the other
wire is 12 4.0 A, pointing out of the page.
=
Find the magnitude and direction of the net magnetic field at point P.
Express your answer using two significant figures.
VO
ΜΕ ΑΣΦ
?
Figure
P
5.0 cm
5.0 cm
₁ = 3.0 A
12 = 4.0 A
B:
μΤ
You have already submitted this answer. Enter a new answer.
No credit lost. Try again.
Submit
Previous Answers Request Answer
1 of 1
Part B
X
Express your answer using two significant figures.
ΜΕ ΑΣΦ
0 = 0
?
below the dashed line to the right P
You have already submitted this answer. Enter a new answer.
No credit lost. Try again.
Chapter 15 Solutions
Fundamentals of Physics Extended
Ch. 15 - Which of the following describe for the SHM of...Ch. 15 - The velocity vt of a particle undergoing SHM is...Ch. 15 - The acceleration at of a particle undergoing SHM...Ch. 15 - Which of the following relationships between the...Ch. 15 - You are to complete Fig. 15-22a so that it is a...Ch. 15 - You are to complete Fig. 15-23a so that it is a...Ch. 15 - Figure 15-24 shows the xt curves for three...Ch. 15 - Figure 15-25 shows plots of the kinetic energy K...Ch. 15 - Figure 15-26 shows three physical pendulums...Ch. 15 - You are to build the oscillation transfer device...
Ch. 15 - In Fig. 15-28, a springblock system is put into...Ch. 15 - Figure 15-29 gives, for three situations, the...Ch. 15 - An object undergoing simple harmonic motion takes...Ch. 15 - A 0.12 kg body undergoes simple harmonic motion of...Ch. 15 - What is the maximum acceleration of a platform...Ch. 15 - An automobile can be considered to be mounted on...Ch. 15 - SSM In an electric shaver, the blade moves back...Ch. 15 - A particle with a mass of 1.00 1020 kg is...Ch. 15 - SSM A loudspeaker produces a musical sound by...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - The position function x = 6.0 m cos3 rad/st /3...Ch. 15 - An oscillating blockspring system takes 0.75 s to...Ch. 15 - In Fig. 15-31, two identical springs of spring...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - SSM An oscillator consists of a block of mass...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - SSM Two particles oscillate in simple harmonic...Ch. 15 - Two particles execute simple harmonic motion of...Ch. 15 - ILW An oscillator consists of a block attached to...Ch. 15 - GO At a certain harbor, the tides cause the ocean...Ch. 15 - A block rides on a piston a squat cylindrical...Ch. 15 - GO Figure 15-33a is a partial graph of the...Ch. 15 - ILW In Fig. 15-31, two springs are attached to a...Ch. 15 - GO Figure 15-34 shows block 1 of mass 0.200 kg...Ch. 15 - SSM WWW A block is on a horizontal surface a shake...Ch. 15 - In Fig. 15-35, two springs are joined and...Ch. 15 - GO In Fig. 15-36, a block weighing 14.0 N, which...Ch. 15 - GO In Fig. 15-37, two blocks m = 1.8 kg and M = 10...Ch. 15 - SSM When the displacement in SHM is one-half the...Ch. 15 - Figure 15-38 gives the one-dimensional potential...Ch. 15 - SSM Find the mechanical energy of a blockspring...Ch. 15 - An oscillating blockspring system has a mechanical...Ch. 15 - ILW A 5.00 kg object on a horizontal frictionless...Ch. 15 - Figure 15-39 shows the kinetic energy K of a...Ch. 15 - GO A block of mass M = 5.4 kg, at rest on a...Ch. 15 - GO In Fig. 15-41, block 2 of mass 2.0 kg...Ch. 15 - A 10 g particle undergoes SHM with an amplitude of...Ch. 15 - If the phase angle for a blockspring system in SHM...Ch. 15 - GO A massless spring hangs from the ceiling with a...Ch. 15 - A 95 kg solid sphere with a 15 cm radius is...Ch. 15 - SSM WWW The balance wheel of an old-fashioned...Ch. 15 - ILW A physical pendulum consists of a meter stick...Ch. 15 - SSM In Fig. 15-42, the pendulum consists of a...Ch. 15 - Suppose that a simple pendulum consists of a small...Ch. 15 - a If the physical pendulum of Fig. 15-13 and the...Ch. 15 - A physical pendulum consists of two meter-long...Ch. 15 - A performer seated on a trapeze is swinging back...Ch. 15 - A physical pendulum has a center of oscillation at...Ch. 15 - In Fig. 15-44, a physical pendulum consists of a...Ch. 15 - GO A rectangular block, with face lengths a = 35...Ch. 15 - GO The angle of the pendulum of Fig. 15-11b is...Ch. 15 - Prob. 50PCh. 15 - GO In Fig. 15-46, a stick of length L = 1.85 m...Ch. 15 - GO The 3.00 kg cube in Fig. 15-47 has edge lengths...Ch. 15 - SSM ILW In the overhead view of Fig. 15-48, a long...Ch. 15 - Prob. 54PCh. 15 - GO A pendulum is formed by pivoting a long thin...Ch. 15 - In Fig. 15-50: a 2.50 kg disk of diameter D = 42.0...Ch. 15 - The amplitude of a lightly damped oscillator...Ch. 15 - For the damped oscillator system shown in Fig....Ch. 15 - SSM WWW For the damped oscillator system shown in...Ch. 15 - The suspension system of a 2000 kg automobile sags...Ch. 15 - For Eq. 15-45, suppose the amplitude xm is given...Ch. 15 - Hanging from a horizontal beam are nine simple...Ch. 15 - A. 1000 kg car carrying four 82 kg people travels...Ch. 15 - Although California is known for earthquakes, is...Ch. 15 - A loudspeaker diaphragm is oscillating in simple...Ch. 15 - A uniform spring with k = 8600 N/m is cut into...Ch. 15 - GO In Fig. 15-51, three 10, 000 kg ore cars are...Ch. 15 - A 2.00 kg block hangs from a spring. A 300 g body...Ch. 15 - SSM In the engine of a locomotive, a cylindrical...Ch. 15 - GO A wheel is free to rotate about its fixed axle....Ch. 15 - A 50.0 g stone is attached to the bottom of a...Ch. 15 - A uniform circular disk: whose radius R is 12.6 cm...Ch. 15 - SSM A vertical spring stretches 9.6 cm when a 1.3...Ch. 15 - A massless spring with spring constant 19 N/m...Ch. 15 - A 4.00 kg block is suspended from a spring with k...Ch. 15 - A 55.0 g block oscillates in SHM on the end of a...Ch. 15 - Figure 15-53 gives the position of a 20 g block...Ch. 15 - Figure 15-53 gives the position xt of a block...Ch. 15 - Figure 15-54 shows the kinetic energy K of a...Ch. 15 - A block is in SHM on the end of a spring, with...Ch. 15 - A simple harmonic oscillator consists of a 0.50 kg...Ch. 15 - A simple pendulum of length 20 cm and mass 5.0 g...Ch. 15 - The scale of a spring balance that reads from 0 to...Ch. 15 - A 0.10 kg block oscillates back and forth along a...Ch. 15 - The end point of a spring oscillates with a period...Ch. 15 - The tip of one prong of a tuning fork undergoes...Ch. 15 - Prob. 87PCh. 15 - A block weighing 20 N oscillates at one end of a...Ch. 15 - A 3.0 kg particle is in simple harmonic motion in...Ch. 15 - A particle executes linear SHM with frequency 0.25...Ch. 15 - SSM What is the frequency of a simple pendulum 2.0...Ch. 15 - A grandfather clock has a pendulum that consists...Ch. 15 - A 4.00 kg block hangs from a spring, extending it...Ch. 15 - What is the phase constant for SMH with at given...Ch. 15 - An engineer has an odd-shaped 10 kg object and...Ch. 15 - A spider can tell when its web has captured, say,...Ch. 15 - A torsion pendulum consists of a metal disk with a...Ch. 15 - When a 20 N can is hung from the bottom of a...Ch. 15 - For a simple pendulum, find the angular amplitude...Ch. 15 - In Fig. 15-59, a solid cylinder attached to a...Ch. 15 - SSM A 1.2 kg block sliding on a horizontal...Ch. 15 - A simple harmonic oscillator consists of an 0.80...Ch. 15 - A block sliding on a horizontal frictionless...Ch. 15 - A damped harmonic oscillator consists of a block m...Ch. 15 - A block weighing 10.0 N is attached to the lower...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - The vibration frequencies of atoms in solids at...Ch. 15 - Figure 15-61 shows that if we hang a block on the...Ch. 15 - The physical pendulum in Fig. 15-62 has two...Ch. 15 - A common device for entertaining a toddler is a...Ch. 15 - A 2.0 kg block executes SHM while attached to a...Ch. 15 - In Fig. 15-64, a 2500 kg demolition ball swings...Ch. 15 - The center of oscillation of a physical pendulum...Ch. 15 - A hypothetical large slingshot is stretched 2.30 m...Ch. 15 - What is the length of a simple pendulum whose full...Ch. 15 - A 2.0 kg block is attached to the end of a spring...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
PRACTICE 1.3 The melting point of table salt is 1474oF. What temperature is this on the Celsius and Kelvin scal...
Chemistry (7th Edition)
An atom with a formal charge does not necessarily have more or less electron density than the atoms in the mole...
Organic Chemistry (8th Edition)
WHAT IF What would the discovery of a bacterial species that is a methanogen imply about the evolution of the ...
Campbell Biology (11th Edition)
3. FIGURE Q12.3 shows three rotating disks, all of equal mass. Rank in order, from largest to smallest, their r...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
9. A nearsighted woman has a far point of 300 cm. What kind of lens, converging or diverging, should be prescri...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forwardA small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forward
- TICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forwardThe 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forwardImagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.arrow_forward
- If a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forwardA futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forward
- Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forwardAt a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?arrow_forwardA hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY