Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 39P
SSM WWW The balance wheel of an old-fashioned watch oscillates with angular amplitude π rad and period 0.500 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed at displacement π/2 rad, and (c) the magnitude of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The balance wheel of an old-fashioned watch oscillates with angular amplitude p rad and period 0.500 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed at displacement p/2 rad, and (c) the magnitude of the angular acceleration at displacement p/4 rad.
The balance wheel of a watch oscillates with angular amplitude 1.3ä rad and period 0.82 s. Find (a) the maximum angular speed of the
wheel, (b) the angular speed of the wheel at displacement 1.3r/2rad, and (c) the magnitude of the angular acceleration at
displacement 1.3r/4 rad.
(a) Number
i
Units
(b) Number
Units
(c) Number
i
Units
Chapter 15, Problem 039
The balance wheel of a watch oscillates with angular amplitude 0.64n rad and period 0.68 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement 0.64n/2 rad, and (c) the magnitude of the
angular acceleration at displacement 0.64n,/4 rad.
(a) Number
Units
(b) Number
Units
(c) Number
Units
Chapter 15 Solutions
Fundamentals of Physics Extended
Ch. 15 - Which of the following describe for the SHM of...Ch. 15 - The velocity vt of a particle undergoing SHM is...Ch. 15 - The acceleration at of a particle undergoing SHM...Ch. 15 - Which of the following relationships between the...Ch. 15 - You are to complete Fig. 15-22a so that it is a...Ch. 15 - You are to complete Fig. 15-23a so that it is a...Ch. 15 - Figure 15-24 shows the xt curves for three...Ch. 15 - Figure 15-25 shows plots of the kinetic energy K...Ch. 15 - Figure 15-26 shows three physical pendulums...Ch. 15 - You are to build the oscillation transfer device...
Ch. 15 - In Fig. 15-28, a springblock system is put into...Ch. 15 - Figure 15-29 gives, for three situations, the...Ch. 15 - An object undergoing simple harmonic motion takes...Ch. 15 - A 0.12 kg body undergoes simple harmonic motion of...Ch. 15 - What is the maximum acceleration of a platform...Ch. 15 - An automobile can be considered to be mounted on...Ch. 15 - SSM In an electric shaver, the blade moves back...Ch. 15 - A particle with a mass of 1.00 1020 kg is...Ch. 15 - SSM A loudspeaker produces a musical sound by...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - The position function x = 6.0 m cos3 rad/st /3...Ch. 15 - An oscillating blockspring system takes 0.75 s to...Ch. 15 - In Fig. 15-31, two identical springs of spring...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - SSM An oscillator consists of a block of mass...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - SSM Two particles oscillate in simple harmonic...Ch. 15 - Two particles execute simple harmonic motion of...Ch. 15 - ILW An oscillator consists of a block attached to...Ch. 15 - GO At a certain harbor, the tides cause the ocean...Ch. 15 - A block rides on a piston a squat cylindrical...Ch. 15 - GO Figure 15-33a is a partial graph of the...Ch. 15 - ILW In Fig. 15-31, two springs are attached to a...Ch. 15 - GO Figure 15-34 shows block 1 of mass 0.200 kg...Ch. 15 - SSM WWW A block is on a horizontal surface a shake...Ch. 15 - In Fig. 15-35, two springs are joined and...Ch. 15 - GO In Fig. 15-36, a block weighing 14.0 N, which...Ch. 15 - GO In Fig. 15-37, two blocks m = 1.8 kg and M = 10...Ch. 15 - SSM When the displacement in SHM is one-half the...Ch. 15 - Figure 15-38 gives the one-dimensional potential...Ch. 15 - SSM Find the mechanical energy of a blockspring...Ch. 15 - An oscillating blockspring system has a mechanical...Ch. 15 - ILW A 5.00 kg object on a horizontal frictionless...Ch. 15 - Figure 15-39 shows the kinetic energy K of a...Ch. 15 - GO A block of mass M = 5.4 kg, at rest on a...Ch. 15 - GO In Fig. 15-41, block 2 of mass 2.0 kg...Ch. 15 - A 10 g particle undergoes SHM with an amplitude of...Ch. 15 - If the phase angle for a blockspring system in SHM...Ch. 15 - GO A massless spring hangs from the ceiling with a...Ch. 15 - A 95 kg solid sphere with a 15 cm radius is...Ch. 15 - SSM WWW The balance wheel of an old-fashioned...Ch. 15 - ILW A physical pendulum consists of a meter stick...Ch. 15 - SSM In Fig. 15-42, the pendulum consists of a...Ch. 15 - Suppose that a simple pendulum consists of a small...Ch. 15 - a If the physical pendulum of Fig. 15-13 and the...Ch. 15 - A physical pendulum consists of two meter-long...Ch. 15 - A performer seated on a trapeze is swinging back...Ch. 15 - A physical pendulum has a center of oscillation at...Ch. 15 - In Fig. 15-44, a physical pendulum consists of a...Ch. 15 - GO A rectangular block, with face lengths a = 35...Ch. 15 - GO The angle of the pendulum of Fig. 15-11b is...Ch. 15 - Prob. 50PCh. 15 - GO In Fig. 15-46, a stick of length L = 1.85 m...Ch. 15 - GO The 3.00 kg cube in Fig. 15-47 has edge lengths...Ch. 15 - SSM ILW In the overhead view of Fig. 15-48, a long...Ch. 15 - Prob. 54PCh. 15 - GO A pendulum is formed by pivoting a long thin...Ch. 15 - In Fig. 15-50: a 2.50 kg disk of diameter D = 42.0...Ch. 15 - The amplitude of a lightly damped oscillator...Ch. 15 - For the damped oscillator system shown in Fig....Ch. 15 - SSM WWW For the damped oscillator system shown in...Ch. 15 - The suspension system of a 2000 kg automobile sags...Ch. 15 - For Eq. 15-45, suppose the amplitude xm is given...Ch. 15 - Hanging from a horizontal beam are nine simple...Ch. 15 - A. 1000 kg car carrying four 82 kg people travels...Ch. 15 - Although California is known for earthquakes, is...Ch. 15 - A loudspeaker diaphragm is oscillating in simple...Ch. 15 - A uniform spring with k = 8600 N/m is cut into...Ch. 15 - GO In Fig. 15-51, three 10, 000 kg ore cars are...Ch. 15 - A 2.00 kg block hangs from a spring. A 300 g body...Ch. 15 - SSM In the engine of a locomotive, a cylindrical...Ch. 15 - GO A wheel is free to rotate about its fixed axle....Ch. 15 - A 50.0 g stone is attached to the bottom of a...Ch. 15 - A uniform circular disk: whose radius R is 12.6 cm...Ch. 15 - SSM A vertical spring stretches 9.6 cm when a 1.3...Ch. 15 - A massless spring with spring constant 19 N/m...Ch. 15 - A 4.00 kg block is suspended from a spring with k...Ch. 15 - A 55.0 g block oscillates in SHM on the end of a...Ch. 15 - Figure 15-53 gives the position of a 20 g block...Ch. 15 - Figure 15-53 gives the position xt of a block...Ch. 15 - Figure 15-54 shows the kinetic energy K of a...Ch. 15 - A block is in SHM on the end of a spring, with...Ch. 15 - A simple harmonic oscillator consists of a 0.50 kg...Ch. 15 - A simple pendulum of length 20 cm and mass 5.0 g...Ch. 15 - The scale of a spring balance that reads from 0 to...Ch. 15 - A 0.10 kg block oscillates back and forth along a...Ch. 15 - The end point of a spring oscillates with a period...Ch. 15 - The tip of one prong of a tuning fork undergoes...Ch. 15 - Prob. 87PCh. 15 - A block weighing 20 N oscillates at one end of a...Ch. 15 - A 3.0 kg particle is in simple harmonic motion in...Ch. 15 - A particle executes linear SHM with frequency 0.25...Ch. 15 - SSM What is the frequency of a simple pendulum 2.0...Ch. 15 - A grandfather clock has a pendulum that consists...Ch. 15 - A 4.00 kg block hangs from a spring, extending it...Ch. 15 - What is the phase constant for SMH with at given...Ch. 15 - An engineer has an odd-shaped 10 kg object and...Ch. 15 - A spider can tell when its web has captured, say,...Ch. 15 - A torsion pendulum consists of a metal disk with a...Ch. 15 - When a 20 N can is hung from the bottom of a...Ch. 15 - For a simple pendulum, find the angular amplitude...Ch. 15 - In Fig. 15-59, a solid cylinder attached to a...Ch. 15 - SSM A 1.2 kg block sliding on a horizontal...Ch. 15 - A simple harmonic oscillator consists of an 0.80...Ch. 15 - A block sliding on a horizontal frictionless...Ch. 15 - A damped harmonic oscillator consists of a block m...Ch. 15 - A block weighing 10.0 N is attached to the lower...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - The vibration frequencies of atoms in solids at...Ch. 15 - Figure 15-61 shows that if we hang a block on the...Ch. 15 - The physical pendulum in Fig. 15-62 has two...Ch. 15 - A common device for entertaining a toddler is a...Ch. 15 - A 2.0 kg block executes SHM while attached to a...Ch. 15 - In Fig. 15-64, a 2500 kg demolition ball swings...Ch. 15 - The center of oscillation of a physical pendulum...Ch. 15 - A hypothetical large slingshot is stretched 2.30 m...Ch. 15 - What is the length of a simple pendulum whose full...Ch. 15 - A 2.0 kg block is attached to the end of a spring...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
PRACTICE 1.3 The melting point of table salt is 1474oF. What temperature is this on the Celsius and Kelvin scal...
Chemistry (7th Edition)
An atom with a formal charge does not necessarily have more or less electron density than the atoms in the mole...
Organic Chemistry (8th Edition)
WHAT IF What would the discovery of a bacterial species that is a methanogen imply about the evolution of the ...
Campbell Biology (11th Edition)
3. FIGURE Q12.3 shows three rotating disks, all of equal mass. Rank in order, from largest to smallest, their r...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
9. A nearsighted woman has a far point of 300 cm. What kind of lens, converging or diverging, should be prescri...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The angular position of a pendulum is represented by the equation = 0.032 0 cos t, where is in radians and = 4.43 rad/s. Determine the period and length of the pendulum.arrow_forwardThe balance wheel of a watch oscillates with angular amplitude 1.0n rad and period 0.34 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement 1.0n/2 rad, and (c) the magnitude of the angular acceleration at displacement 1.0n/4 rad. (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardThe balance wheel of a watch oscillates with angular amplitude 0.59?0.59π rad and period 0.18 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement 0.59?/20.59π/2 rad, and (c) the magnitude of the angular acceleration at displacement 0.59?/40.59π/4 rad.arrow_forward
- A pendulum whose length is 2 m is located at a place where g = 9.8 m/s^2. The pendulum swings with an amplitude of 2°. Express, as a function of time,(a) its angular displacement, (b) its angular velocity, (c) its angular acceleration, (d) its linear velocity, (e) its centripetal acceleration, and (f) the tension in the rope if the mass at its end is 1 kg.arrow_forwardThe balance wheel of a watch oscillates with angular amplitude aband period 0.57 s. Find (a) the maximum angular speed of the wheel, (b) the angular speed of the wheel at displacement and and (c) the magnitude of the angular acceleration at displacement 0/4 (a) Number (b) Number (c) Number i Units Units Unitsarrow_forwardAny object moving with a specified angular velocity is known to be an object that moves in simple harmonic motion. The displacement (d) of an object moving in simple harmonic motion is described by the function d = R sin(wt) such that d is the radius of the rotating object, w is the angular velocity of the rotating object. The moon is a satellite that rotates around Earth with a nearly circular elliptic orbit. With this orbit, the approximate distance of the moon from the Earth is 385,000 km rotating at 14,091.21 km per hour. Using this information, sketch a graph of the moon's orbit around Earth and the a. domain and range: b. amplitude: с. period: d. interval:arrow_forward
- A hollow cylinder of mass M1 and radius R1 rolls without slipping on the inside surface of another hollow cylinder of mass M2 and radius R2. Assume R1<<RZ. Both axes are horizontal, and the larger cylinder is free to rotate about its axis What is the angular velocity or frequency of small oscillationsarrow_forward= 200 N/m and E = 4 J The solution of the equation of motion of a simple pendulum is given by: 8(t) = 0.2 cos(5nt), where 8 is in radians and t in seconds. Determine the angular speed of the bob, when it passes through its lowest point. Oe' = ±0.1 rad/s e' = ± rad/s e' = ±0.2π rad/s e' = n/2 rad/s Istring with length L1. When set into aarrow_forwardA torsional oscillator of rotational inertia 1.6 kg⋅m2kg⋅m2 and torsional constant 3.4 N⋅m/radN⋅m/rad has a total energy of 5.1 J. What is its maximum angular speed?arrow_forward
- A simple pendulum having a 1-m long string oscillates in a vertical plane such that at a particular moment t*, the angular displacement is e* and the angular speed is v*. The magnitude of the tangential acceleration at time t* is O (v*)^2/L gsine* O sqrt((gsine* )^2+((v*^2 )/L)^2) O gsinje*|arrow_forwardAn object is undergoing simple harmonic motion along the x-axis. Its position is described as a function of time by x(t) = 2.8 cos(3.1t – 1.4), where x is in meters, the time, t, is in seconds, and the argument of the cosine is in radians. Find the amplitude of the simple harmonic motion in meters. What is the value of the angular velocity in radians per second. Determine the position of the object in meters and the objects velocity in meters per secondd when the time=0.arrow_forwardPravinbhaiarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY