Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 79P
Figure 15-54 shows the kinetic energy K of a simple pendulum versus its angle
Figure 15-54 Problem 79.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
K (mJ)
79 Figure 15-54 shows the kinetic
energy K of a simple pendulum versus
its angle e from the vertical. The verti-
K-
cal axis scale is set by K, = 10.0 mJ.
The pendulum bob has mass 0.200 kg.
What is the length of the pendulum?
A block is in SUM on tha and
-100 -50
50
100
Problem 2 ( ). A very light spring with spring constant 200 N/m hangs vertically
the ceiling with equilbrium length Lo = 6 cm. When a 300 g mass is attached to the end
spring, the mass-spring system extends to a new equilibrium length.
Lo
y = 0
(a)
What is the length L of the spring when the mass-spring system is in equilibrium?
If the mass is released from rest with the spring at its original equilibrium length
(b)
6 cm, find the velocity of the mass when the spring has stretched to the length L you found in (a).
000000
The length of a spring increases by 6.00 cm from its relaxed length when a mass of 1.40 kg is hanging in equilibrium from the spring.What is the spring constant?
Chapter 15 Solutions
Fundamentals of Physics Extended
Ch. 15 - Which of the following describe for the SHM of...Ch. 15 - The velocity vt of a particle undergoing SHM is...Ch. 15 - The acceleration at of a particle undergoing SHM...Ch. 15 - Which of the following relationships between the...Ch. 15 - You are to complete Fig. 15-22a so that it is a...Ch. 15 - You are to complete Fig. 15-23a so that it is a...Ch. 15 - Figure 15-24 shows the xt curves for three...Ch. 15 - Figure 15-25 shows plots of the kinetic energy K...Ch. 15 - Figure 15-26 shows three physical pendulums...Ch. 15 - You are to build the oscillation transfer device...
Ch. 15 - In Fig. 15-28, a springblock system is put into...Ch. 15 - Figure 15-29 gives, for three situations, the...Ch. 15 - An object undergoing simple harmonic motion takes...Ch. 15 - A 0.12 kg body undergoes simple harmonic motion of...Ch. 15 - What is the maximum acceleration of a platform...Ch. 15 - An automobile can be considered to be mounted on...Ch. 15 - SSM In an electric shaver, the blade moves back...Ch. 15 - A particle with a mass of 1.00 1020 kg is...Ch. 15 - SSM A loudspeaker produces a musical sound by...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - The position function x = 6.0 m cos3 rad/st /3...Ch. 15 - An oscillating blockspring system takes 0.75 s to...Ch. 15 - In Fig. 15-31, two identical springs of spring...Ch. 15 - What is the phase constant for the harmonic...Ch. 15 - SSM An oscillator consists of a block of mass...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - SSM Two particles oscillate in simple harmonic...Ch. 15 - Two particles execute simple harmonic motion of...Ch. 15 - ILW An oscillator consists of a block attached to...Ch. 15 - GO At a certain harbor, the tides cause the ocean...Ch. 15 - A block rides on a piston a squat cylindrical...Ch. 15 - GO Figure 15-33a is a partial graph of the...Ch. 15 - ILW In Fig. 15-31, two springs are attached to a...Ch. 15 - GO Figure 15-34 shows block 1 of mass 0.200 kg...Ch. 15 - SSM WWW A block is on a horizontal surface a shake...Ch. 15 - In Fig. 15-35, two springs are joined and...Ch. 15 - GO In Fig. 15-36, a block weighing 14.0 N, which...Ch. 15 - GO In Fig. 15-37, two blocks m = 1.8 kg and M = 10...Ch. 15 - SSM When the displacement in SHM is one-half the...Ch. 15 - Figure 15-38 gives the one-dimensional potential...Ch. 15 - SSM Find the mechanical energy of a blockspring...Ch. 15 - An oscillating blockspring system has a mechanical...Ch. 15 - ILW A 5.00 kg object on a horizontal frictionless...Ch. 15 - Figure 15-39 shows the kinetic energy K of a...Ch. 15 - GO A block of mass M = 5.4 kg, at rest on a...Ch. 15 - GO In Fig. 15-41, block 2 of mass 2.0 kg...Ch. 15 - A 10 g particle undergoes SHM with an amplitude of...Ch. 15 - If the phase angle for a blockspring system in SHM...Ch. 15 - GO A massless spring hangs from the ceiling with a...Ch. 15 - A 95 kg solid sphere with a 15 cm radius is...Ch. 15 - SSM WWW The balance wheel of an old-fashioned...Ch. 15 - ILW A physical pendulum consists of a meter stick...Ch. 15 - SSM In Fig. 15-42, the pendulum consists of a...Ch. 15 - Suppose that a simple pendulum consists of a small...Ch. 15 - a If the physical pendulum of Fig. 15-13 and the...Ch. 15 - A physical pendulum consists of two meter-long...Ch. 15 - A performer seated on a trapeze is swinging back...Ch. 15 - A physical pendulum has a center of oscillation at...Ch. 15 - In Fig. 15-44, a physical pendulum consists of a...Ch. 15 - GO A rectangular block, with face lengths a = 35...Ch. 15 - GO The angle of the pendulum of Fig. 15-11b is...Ch. 15 - Prob. 50PCh. 15 - GO In Fig. 15-46, a stick of length L = 1.85 m...Ch. 15 - GO The 3.00 kg cube in Fig. 15-47 has edge lengths...Ch. 15 - SSM ILW In the overhead view of Fig. 15-48, a long...Ch. 15 - Prob. 54PCh. 15 - GO A pendulum is formed by pivoting a long thin...Ch. 15 - In Fig. 15-50: a 2.50 kg disk of diameter D = 42.0...Ch. 15 - The amplitude of a lightly damped oscillator...Ch. 15 - For the damped oscillator system shown in Fig....Ch. 15 - SSM WWW For the damped oscillator system shown in...Ch. 15 - The suspension system of a 2000 kg automobile sags...Ch. 15 - For Eq. 15-45, suppose the amplitude xm is given...Ch. 15 - Hanging from a horizontal beam are nine simple...Ch. 15 - A. 1000 kg car carrying four 82 kg people travels...Ch. 15 - Although California is known for earthquakes, is...Ch. 15 - A loudspeaker diaphragm is oscillating in simple...Ch. 15 - A uniform spring with k = 8600 N/m is cut into...Ch. 15 - GO In Fig. 15-51, three 10, 000 kg ore cars are...Ch. 15 - A 2.00 kg block hangs from a spring. A 300 g body...Ch. 15 - SSM In the engine of a locomotive, a cylindrical...Ch. 15 - GO A wheel is free to rotate about its fixed axle....Ch. 15 - A 50.0 g stone is attached to the bottom of a...Ch. 15 - A uniform circular disk: whose radius R is 12.6 cm...Ch. 15 - SSM A vertical spring stretches 9.6 cm when a 1.3...Ch. 15 - A massless spring with spring constant 19 N/m...Ch. 15 - A 4.00 kg block is suspended from a spring with k...Ch. 15 - A 55.0 g block oscillates in SHM on the end of a...Ch. 15 - Figure 15-53 gives the position of a 20 g block...Ch. 15 - Figure 15-53 gives the position xt of a block...Ch. 15 - Figure 15-54 shows the kinetic energy K of a...Ch. 15 - A block is in SHM on the end of a spring, with...Ch. 15 - A simple harmonic oscillator consists of a 0.50 kg...Ch. 15 - A simple pendulum of length 20 cm and mass 5.0 g...Ch. 15 - The scale of a spring balance that reads from 0 to...Ch. 15 - A 0.10 kg block oscillates back and forth along a...Ch. 15 - The end point of a spring oscillates with a period...Ch. 15 - The tip of one prong of a tuning fork undergoes...Ch. 15 - Prob. 87PCh. 15 - A block weighing 20 N oscillates at one end of a...Ch. 15 - A 3.0 kg particle is in simple harmonic motion in...Ch. 15 - A particle executes linear SHM with frequency 0.25...Ch. 15 - SSM What is the frequency of a simple pendulum 2.0...Ch. 15 - A grandfather clock has a pendulum that consists...Ch. 15 - A 4.00 kg block hangs from a spring, extending it...Ch. 15 - What is the phase constant for SMH with at given...Ch. 15 - An engineer has an odd-shaped 10 kg object and...Ch. 15 - A spider can tell when its web has captured, say,...Ch. 15 - A torsion pendulum consists of a metal disk with a...Ch. 15 - When a 20 N can is hung from the bottom of a...Ch. 15 - For a simple pendulum, find the angular amplitude...Ch. 15 - In Fig. 15-59, a solid cylinder attached to a...Ch. 15 - SSM A 1.2 kg block sliding on a horizontal...Ch. 15 - A simple harmonic oscillator consists of an 0.80...Ch. 15 - A block sliding on a horizontal frictionless...Ch. 15 - A damped harmonic oscillator consists of a block m...Ch. 15 - A block weighing 10.0 N is attached to the lower...Ch. 15 - A simple harmonic oscillator consists of a block...Ch. 15 - The vibration frequencies of atoms in solids at...Ch. 15 - Figure 15-61 shows that if we hang a block on the...Ch. 15 - The physical pendulum in Fig. 15-62 has two...Ch. 15 - A common device for entertaining a toddler is a...Ch. 15 - A 2.0 kg block executes SHM while attached to a...Ch. 15 - In Fig. 15-64, a 2500 kg demolition ball swings...Ch. 15 - The center of oscillation of a physical pendulum...Ch. 15 - A hypothetical large slingshot is stretched 2.30 m...Ch. 15 - What is the length of a simple pendulum whose full...Ch. 15 - A 2.0 kg block is attached to the end of a spring...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16.
a. Calculate the standard free energy change as a pair of electrons is transferred from succinate to mole...
Biochemistry: Concepts and Connections (2nd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Name three shoreline features that are produced, in part, by longshore transport. ______________________ ______...
Applications and Investigations in Earth Science (9th Edition)
WHAT IF? Suppose two plant populations exchange pollen and seeds. In one population, individuals of genotype AA...
Campbell Biology in Focus (2nd Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
How does an obligate aerobe differ from a facultative aerobe?
Brock Biology of Microorganisms (15th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A simple pendulum as shown in Fig. 4.24 oscillates back and forth. Use the letter designations in the figure to identify the pendulums position(s) for the following conditions. (There may be more than one answer. Consider the pendulum to be ideal with no energy losses.) (a) Position(s) of instantaneous rest ___ (b) Position(s) of maximum velocity ___ (c) Position(s) of maximum Ek ___ (d) Position(s) of maximum Ep ___ (e) Position(s) of minimum Ek ___ (f) Position(s) of minimum Ep ___ (g) Position(s) after which Ek increases ___ (h) Position(s) after which Ep increases ___ (i) Position(s) after which Ek decreases ___ (j) Position(s) after which Ep decreases ___ Figure 4.24 The Simple Pendulum and Energyarrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardA Physics Question is the image attachedarrow_forward
- A block with mass 300 g is held at rest against a spring with spring con- stant 200 N/m that has been compressed 3 cm from its equilibrium length. The block is released and allowed to slide on a table, and the coefficient of kinetic friction between the block and the Problem 1 table is 0.3. The block slides a short distance on the table and then comes to rest. Assume the block loses contact with the spring when the spring is at its equilibrium length, and that the friction force only acts after the block has lost contact with the spring. (a) How much work does the spring force do on the block? (b) How much work does the kinetic friction force do on the block? (c) After leaving the spring, what distance does the block slide before coming to rest? (d) What speed did the block have after sliding 5 cm from the point it lost contact with the spring?arrow_forwardA pendulum consists of a mass m = 0.2 kg on the end of a string of length L = 0.3 m. At the moment the mass at its lowest point, it is observed that the speed of the mass is v = 2.2 m/s. What can we say about the work Ws done by the string?arrow_forwardProf. P. built a wooden pendulum clock over the break between Winter and Spring quarters during the COVID lockdown (he really did!) If the length of the pendulum is 30.56 cm and the pendulum is pulled to the right 4.8 cm from the equilibrium position to start it moving and it starts at rest, what is the greatest speed of the pendulum as it swings? (Assume that the pendulum swings freely with no friction and use energy considerations to solve)arrow_forward
- A block of mass m=1kg is sliding on a rough surface with a speed vi=10 m/s when it strikes a massless spring head on and compresses the spring a maximum distance x=10cm. If the spring has force constant k=60 N/m determine the coefficient of kinetic friction between block and surfacearrow_forwardA 50 cm long spring with spring constant 203 N/m has a mass 1.2 kg attached to it, and it can ocillate on a horizontal table without any friction. When the spring is pulled so that its length is 58 cm, what is the total mechanical energy in the oscillations?arrow_forward1) A pendulum bob of mass 0.710 kg is suspended by a string of length 1.50 m. The bob is released from rest when the string is at 30°to the vertical. The swing is interrupted by a peg 1.00 m vertically below the support as shown below. What is the maximum angle to the vertical made by the string after it hits the peg? 1 marrow_forward
- The maximum speed of the bob of a simple pendulum is vmax = 1.8 m/s. At the position where the potential energy is equal to the kinetic energy (U = K), the speed of the bob is: O v = 1.16 m/s O v = 1.04 m/s O v = 1.27 m/s O v = 1.38 m/sarrow_forwardA mass of 2kg is attached to a spring of spring constant 50N/m. The block is pulled to a distance of 5cm from its equilibrium position at x=0 on a horizontal frictionless surface from rest at t=0.Write the expression for its displacement at anytime t.arrow_forwardThe maximum speed of the pendulum bob in a grandfather clock is 0.60 m/s. If the pendulum makes a maximum angle of 5.8 degrees with the vertical, what is the length of the pendulum? Express your answer using two significant figures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY