The center of oscillation of a physical pendulum has this interesting property: It an impulse (assumed horizontal and in the plane of oscillation) acts at the center of oscillation, no oscillations are felt at the point of support. Baseball players (and players of many other sports) know that unless the ball hits the bat at this point (called the “sweet spot” by athletes), the oscillations due to the impact will sting their hands. To prove this property, let the stick in Fig. 15-I3 a simulate a baseball bat. Suppose that a horizontal force F → (due to impact with the ball) acts toward the right at P , the center of oscillation. The batter is assumed to hold the bat at O , the pivot point of the stick, (a) What acceleration does the point O undergo as a result of F → ? (b) What angular acceleration is produced by F → about the center of mass of the stick? (c) As a result of the angular acceleration in (b), what linear acceleration does point O undergo? (d) Considering the magnitudes and directions of the accelerations in (a) and (c), convince yourself that P is indeed the “sweet spot.”
The center of oscillation of a physical pendulum has this interesting property: It an impulse (assumed horizontal and in the plane of oscillation) acts at the center of oscillation, no oscillations are felt at the point of support. Baseball players (and players of many other sports) know that unless the ball hits the bat at this point (called the “sweet spot” by athletes), the oscillations due to the impact will sting their hands. To prove this property, let the stick in Fig. 15-I3 a simulate a baseball bat. Suppose that a horizontal force F → (due to impact with the ball) acts toward the right at P , the center of oscillation. The batter is assumed to hold the bat at O , the pivot point of the stick, (a) What acceleration does the point O undergo as a result of F → ? (b) What angular acceleration is produced by F → about the center of mass of the stick? (c) As a result of the angular acceleration in (b), what linear acceleration does point O undergo? (d) Considering the magnitudes and directions of the accelerations in (a) and (c), convince yourself that P is indeed the “sweet spot.”
The center of oscillation of a physical pendulum has this interesting property: It an impulse (assumed horizontal and in the plane of oscillation) acts at the center of oscillation, no oscillations are felt at the point of support. Baseball players (and players of many other sports) know that unless the ball hits the bat at this point (called the “sweet spot” by athletes), the oscillations due to the impact will sting their hands. To prove this property, let the stick in Fig. 15-I3a simulate a baseball bat. Suppose that a horizontal force
F
→
(due to impact with the ball) acts toward the right at P, the center of oscillation. The batter is assumed to hold the bat at O, the pivot point of the stick, (a) What acceleration does the point O undergo as a result of
F
→
? (b) What angular acceleration is produced by
F
→
about the center of mass of the stick? (c) As a result of the angular acceleration in (b), what linear acceleration does point O undergo? (d) Considering the magnitudes and directions of the accelerations in (a) and (c), convince yourself that P is indeed the “sweet spot.”
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
If a 1/2 inch diameter drill bit spins at 3000 rotations per minute, how fast is the outer edge moving as it contacts a piece of metal while drilling a machine part?
Need help with the third question (C)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his hand at an angl reesulting in the reaction force shown.
Q: What is the direction of the force on the current carrying conductor in the
magnetic field in each of the cases 1 to 8 shown below?
(1)
B
B
B into page
X X X
x
X X X X
(2)
B
11 -10°
B
x I
B
I out of page
(3)
I into page
(4)
B out of page
out of page
I
N
N
S
x X X X
I
X
X X X
I
(5)
(6)
(7)
(8)
S
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.