A village maintains a large tank with an open top, containing water for emergencies. The water can drain from the tank through a hose of diameter 6.60 cm. The hose ends with a nozzle of diameter 2.20 cm. A rubber stopper is inserted into the nozzle. The water level in the tank is kept 7.50 m above the nozzle. (a) Calculate the friction force exerted on the stopper by the nozzle. (b) The stopper is removed. What mass of water flows from the nozzle in 2.00 h? (c) Calculate the gauge pressure of the flowing water in the hose just behind the nozzle.
(a)
The friction force exerted on the stopper by the nozzle.
Answer to Problem 45P
The friction force exerted on the stopper by the nozzle is
Explanation of Solution
Take point 1 to be at the free surface of the water in the tank and point 2 to be inside the nozzle. Since the top of the tank is open to the atmosphere the pressure at point 1 will be equal to atmospheric pressure. Since the tank has large area compared to the nozzle, the speed of water at point 1 will be very small compared to that at point 2 according to continuity equation and can be considered to be zero. Also assume the position of the nozzle to be
Write the Bernoulli’s equation.
Here,
Substitute
The diagram of the different forces on the system is shown below.
In the diagram
The sum of the forces in the horizontal direction must be zero for the stopper.
Write the equilibrium condition for the stopper.
Here,
Write the expression for
Here,
Put the above equation in equation (III) and rewrite it for
Write the equation for pressure.
Here,
Rewrite the above equation for
Use equation (V) to write the expression for
Here,
Use equation (V) to write the expression for
Put the above two equations in equation (IV).
Write the equation for
Here,
Put equations (II) and (VII) in equation (VI).
Conclusion:
The value of
Substitute
Therefore, the friction force exerted on the stopper by the nozzle is
(b)
The mass of water that flows from the nozzle in
Answer to Problem 45P
The mass of water that flows from the nozzle in
Explanation of Solution
When the stopper is removed, point 2 is also at the atmospheric pressure.
Substitute
Write the equation for density of water.
Here,
Write the equation for volume of water.
Here,
Write the equation for the velocity of water at point 2.
Here,
Rewrite the above equation for
Put equation (IX) in the above equation.
Put equations (VII) and (XII) in equation (XI).
Put the above equation in equation (X) and rewrite it for
Conclusion:
Substitute
Therefore, the mass of water that flows from the nozzle in
(c)
The gauge pressure of the flowing water in the hose just behind the nozzle.
Answer to Problem 45P
The gauge pressure of the flowing water in the hose just behind the nozzle is
Explanation of Solution
Assume point 1 to be in the wide hose and point 2 to be just outside the nozzle.
Write the continuity equation of fluids.
Here,
Write the equation for
Here,
Write the equation for
Put the above two equations in equation (XIV) and rewrite it for
Take the vertical position of point 1 and point 2 to be zero.
Substitute
Conclusion:
Substitute
Substitute
Substitute
Therefore, the gauge pressure of the flowing water in the hose just behind the nozzle is
Want to see more full solutions like this?
Chapter 15 Solutions
Principles of Physics: A Calculus-Based Text
Additional Science Textbook Solutions
Chemistry: The Central Science (14th Edition)
Organic Chemistry
Loose Leaf For Integrated Principles Of Zoology
Fundamentals Of Thermodynamics
Campbell Essential Biology with Physiology (5th Edition)
Biology: Life on Earth (11th Edition)
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning