Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 35P
To determine
The mass the vessel must take on if it is to descend at constant speed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Mariana trench is located in the Pacific Ocean and has a depth of approximately 1.10 x 104 m. The density of seawater is 1.03 x 103 kg/m3. If a diving chamber were to explore such depths, what force would the water exert on the chamber’s observation window (radius = 0.10 m)?
The tension in a string holding a solid block below the surface of a liquid (of density greater than the block) is T0 when the container is at rest. When the container is given an upward acceleration of 0.250g, what multiple of T0 gives the tension in the string?
An object with a mass of 0.32 kg is released from rest while immersed within a fluid. It reaches a speed of 49.3% its maximum speed in a time of 0.344 seconds. What is the object's terminal speed if the resistive force acting is given by;
R = -bv
Chapter 15 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 15.1 - Suppose you are standing directly behind someone...Ch. 15.2 - Prob. 15.2QQCh. 15.4 - An apple is held completely submerged just below...Ch. 15.4 - Prob. 15.4QQCh. 15.6 - Prob. 15.5QQCh. 15.7 - You observe two helium balloons floating next to...Ch. 15 - A wooden block floats in water, and a steel object...Ch. 15 - Prob. 2OQCh. 15 - Prob. 3OQCh. 15 - Prob. 4OQ
Ch. 15 - A solid iron sphere and a solid lead sphere of the...Ch. 15 - Prob. 6OQCh. 15 - Prob. 7OQCh. 15 - Prob. 8OQCh. 15 - An ideal fluid flows through a horizontal pipe...Ch. 15 - Prob. 10OQCh. 15 - Prob. 11OQCh. 15 - A small piece of steel is tied to a block of wood....Ch. 15 - A piece of unpainted porous wood barely floats in...Ch. 15 - Prob. 14OQCh. 15 - A water supply maintains a constant rate of flow...Ch. 15 - Prob. 1CQCh. 15 - Because atmospheric pressure is about 105 N/m2 and...Ch. 15 - Two thin-walled drinking glasses having equal base...Ch. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQCh. 15 - Prob. 11CQCh. 15 - Prob. 12CQCh. 15 - (a) Is the buoyant force a conservative force? (b)...Ch. 15 - An empty metal soap dish barely floats in water. A...Ch. 15 - Prob. 15CQCh. 15 - How would you determine the density of an...Ch. 15 - Prob. 17CQCh. 15 - Place two cans of soft drinks, one regular and one...Ch. 15 - Prob. 19CQCh. 15 - Prob. 1PCh. 15 - A 50.0-kg woman wearing high-heeled shoes is...Ch. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - The small piston of a hydraulic lift (Fig. P15.6)...Ch. 15 - A container is filled to a depth of 20.0 cm with...Ch. 15 - Prob. 8PCh. 15 - (a) Calculate the absolute pressure at an ocean...Ch. 15 - (a) A very powerful vacuum cleaner has a hose 2.86...Ch. 15 - What must be the contact area between a suction...Ch. 15 - Prob. 12PCh. 15 - Review. The tank in Figure P15.13 is filled with...Ch. 15 - Review. The tank in Figure P15.13 is filled with...Ch. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Mercury is poured into a U-tube as shown in Figure...Ch. 15 - Prob. 18PCh. 15 - A backyard swimming pool with a circular base of...Ch. 15 - A tank with a flat bottom of area A and vertical...Ch. 15 - Prob. 21PCh. 15 - A Styrofoam slab has thickness h and density s....Ch. 15 - A table-tennis ball has a diameter of 3.80 cm and...Ch. 15 - The gravitational force exerted on a solid object...Ch. 15 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - How many cubic meters of helium are required to...Ch. 15 - Prob. 30PCh. 15 - A plastic sphere floats in water with 50.0% of its...Ch. 15 - The weight of a rectangular block of low-density...Ch. 15 - Decades ago, it was thought that huge herbivorous...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - A light balloon is filled with 400 m3 of helium at...Ch. 15 - A horizontal pipe 10.0 cm in diameter has a smooth...Ch. 15 - Prob. 38PCh. 15 - A large storage tank with an open top is filled to...Ch. 15 - Review. Old Faithful Geyser in Yellowstone...Ch. 15 - (a) A water hose 2.00 cm in diameter is used to...Ch. 15 - Water flows through a fire hose of diameter 6.35...Ch. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - A village maintains a large tank with an open top,...Ch. 15 - Prob. 46PCh. 15 - Figure P15.47 shows a stream of water in steady...Ch. 15 - An airplane is cruising at altitude 10 km. The...Ch. 15 - The Bernoulli effect can have important...Ch. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Prob. 54PCh. 15 - Prob. 55PCh. 15 - Prob. 56PCh. 15 - Prob. 57PCh. 15 - Prob. 58PCh. 15 - Review. A copper cylinder hangs at the bottom of a...Ch. 15 - Prob. 60PCh. 15 - An incompressible, nonviscous fluid is initially...Ch. 15 - In about 1657, Otto von Guericke, inventor of the...Ch. 15 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 15 - A beaker of mass mb containing oil of mass mo and...Ch. 15 - Prob. 65PCh. 15 - Prob. 66PCh. 15 - A U-tube open at both ends is partially filled...Ch. 15 - Prob. 68PCh. 15 - Prob. 69PCh. 15 - The spirit-in-glass thermometer, invented in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A wry powerful vacuum cleaner has a hose 2.86 cm in diameter. With the end of the hose placed perpendicularly on the flat face of a brick, what is the weight of the heaviest brick that the cleaner can lift? (b) What If? An octopus uses one sucker of diameter 2.86 cm on each of the two shells of a clam in an attempt to pull the shells apart. Find the greatest force the octopus can exert on a clamshell in salt water 32.3 m deep.arrow_forwardIn Chapter 1.6 in the discussion of the hydrometer, it is stated: The higher the bulb floats, the greater the density of the liquid. Why is this? (See Fig. 1.14.)arrow_forwardFind the terminal velocity of a spherical bacterium (diameter 2.00 pm) falling in water. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10103 kg/m3.arrow_forward
- When an object is immersed in a liquid at rest, why is the net force on the object in the horizontal direction equal to zero?arrow_forwardAn object is released from rest while immersed within a fluid. The terminal speed of the object is measured to be 8.34 m/s. What was the speed of the object 1.551 s after being released? Let the resistive force be given by R = -bv (Assume that the gravitational force also acts)arrow_forwardAn object with a mass of 0.32 kg is released from rest while immersed within a fluid. It reaches a speed of 39.3 percent its maximum speed in a time of 0.38 seconds. What is the object's terminal speed if the resistive force acting is given by; R = -bv ?arrow_forward
- Consider a spherical bacterium, with radius 1.85 um, falling in water at 20° C. ▷ A Find the terminal speed of the spherical bacterium in meters per second, ignoring the buoyant force on the bacterium and assuming Stokes' law for the viscous force. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.2 x 10³ kg/m³. The viscosity of water at 20 °C is 1.002 x 10-3 kg/m-s and the density is 998 kg/m³. y = 7 8 HOME sin() cotan() cos() asin() atan() acotan tan() T C acos() E 4 6 sinh() 1 2 3 cotanh() + 0 cosh() tanh() Ⓒ Degrees Radians END CLEAR VO BACKSPACE Submit Hint Feedback I give up!arrow_forwardAn object has a volume of 3 x 104 cm3 lies at the bottom of the sea. If the force required to lift the object at a constant speed is 400 N. what is the density of the object knowing that the density of sea water is 1.025 x 10³ kg/m³ a) 1358 kg/m³ b) 1692 kg/m³3 c) 2025 kg/m³ 3 d) 2358 kg/m³arrow_forwardThe water of the Dead Sea is extremely salty, which gives it a very high density of 1240 kg/m3. Explain why a person floats A much higher in the Dead Sea than in ordinary water.arrow_forward
- An anchor of mass 105 kg and volume 4 x 10² m³ is resting on the bottom of a lake, with rope of negligible mass attached to it. What force must be exerted on the rope to lift the anchor when it is halfway out of the water? O 1, 029 N O 833 N O 588 N O 196 Narrow_forwardWhat will be the terminal velocity of a rain drop of radius (r) 1mm and mass (M) 0.001g falling through air. The coefficient of viscosity of air (η) is 1.8 X 10-5Ns/m2? Neglect buoyant force. a) 20 m/s b) 29.47 m/s c) 35.8 m/s d) 40 m/sarrow_forwardSubject: physicsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
How to Calculate Density of Liquids - With Examples; Author: cleanairfilms;https://www.youtube.com/watch?v=DVQMWihs3wQ;License: Standard YouTube License, CC-BY