Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 2OQ
To determine
The statements which are valid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 15.1 - Suppose you are standing directly behind someone...Ch. 15.2 - Prob. 15.2QQCh. 15.4 - An apple is held completely submerged just below...Ch. 15.4 - Prob. 15.4QQCh. 15.6 - Prob. 15.5QQCh. 15.7 - You observe two helium balloons floating next to...Ch. 15 - A wooden block floats in water, and a steel object...Ch. 15 - Prob. 2OQCh. 15 - Prob. 3OQCh. 15 - Prob. 4OQ
Ch. 15 - A solid iron sphere and a solid lead sphere of the...Ch. 15 - Prob. 6OQCh. 15 - Prob. 7OQCh. 15 - Prob. 8OQCh. 15 - An ideal fluid flows through a horizontal pipe...Ch. 15 - Prob. 10OQCh. 15 - Prob. 11OQCh. 15 - A small piece of steel is tied to a block of wood....Ch. 15 - A piece of unpainted porous wood barely floats in...Ch. 15 - Prob. 14OQCh. 15 - A water supply maintains a constant rate of flow...Ch. 15 - Prob. 1CQCh. 15 - Because atmospheric pressure is about 105 N/m2 and...Ch. 15 - Two thin-walled drinking glasses having equal base...Ch. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQCh. 15 - Prob. 11CQCh. 15 - Prob. 12CQCh. 15 - (a) Is the buoyant force a conservative force? (b)...Ch. 15 - An empty metal soap dish barely floats in water. A...Ch. 15 - Prob. 15CQCh. 15 - How would you determine the density of an...Ch. 15 - Prob. 17CQCh. 15 - Place two cans of soft drinks, one regular and one...Ch. 15 - Prob. 19CQCh. 15 - Prob. 1PCh. 15 - A 50.0-kg woman wearing high-heeled shoes is...Ch. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - The small piston of a hydraulic lift (Fig. P15.6)...Ch. 15 - A container is filled to a depth of 20.0 cm with...Ch. 15 - Prob. 8PCh. 15 - (a) Calculate the absolute pressure at an ocean...Ch. 15 - (a) A very powerful vacuum cleaner has a hose 2.86...Ch. 15 - What must be the contact area between a suction...Ch. 15 - Prob. 12PCh. 15 - Review. The tank in Figure P15.13 is filled with...Ch. 15 - Review. The tank in Figure P15.13 is filled with...Ch. 15 - Prob. 15PCh. 15 - Prob. 16PCh. 15 - Mercury is poured into a U-tube as shown in Figure...Ch. 15 - Prob. 18PCh. 15 - A backyard swimming pool with a circular base of...Ch. 15 - A tank with a flat bottom of area A and vertical...Ch. 15 - Prob. 21PCh. 15 - A Styrofoam slab has thickness h and density s....Ch. 15 - A table-tennis ball has a diameter of 3.80 cm and...Ch. 15 - The gravitational force exerted on a solid object...Ch. 15 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - How many cubic meters of helium are required to...Ch. 15 - Prob. 30PCh. 15 - A plastic sphere floats in water with 50.0% of its...Ch. 15 - The weight of a rectangular block of low-density...Ch. 15 - Decades ago, it was thought that huge herbivorous...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - A light balloon is filled with 400 m3 of helium at...Ch. 15 - A horizontal pipe 10.0 cm in diameter has a smooth...Ch. 15 - Prob. 38PCh. 15 - A large storage tank with an open top is filled to...Ch. 15 - Review. Old Faithful Geyser in Yellowstone...Ch. 15 - (a) A water hose 2.00 cm in diameter is used to...Ch. 15 - Water flows through a fire hose of diameter 6.35...Ch. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - A village maintains a large tank with an open top,...Ch. 15 - Prob. 46PCh. 15 - Figure P15.47 shows a stream of water in steady...Ch. 15 - An airplane is cruising at altitude 10 km. The...Ch. 15 - The Bernoulli effect can have important...Ch. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Prob. 54PCh. 15 - Prob. 55PCh. 15 - Prob. 56PCh. 15 - Prob. 57PCh. 15 - Prob. 58PCh. 15 - Review. A copper cylinder hangs at the bottom of a...Ch. 15 - Prob. 60PCh. 15 - An incompressible, nonviscous fluid is initially...Ch. 15 - In about 1657, Otto von Guericke, inventor of the...Ch. 15 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 15 - A beaker of mass mb containing oil of mass mo and...Ch. 15 - Prob. 65PCh. 15 - Prob. 66PCh. 15 - A U-tube open at both ends is partially filled...Ch. 15 - Prob. 68PCh. 15 - Prob. 69PCh. 15 - The spirit-in-glass thermometer, invented in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The gravitational force exerted on a solid object is 5.00 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (Fig. P15.24). Find the density of the object. Figure P15.24 Problems 24 and 25.arrow_forwardA 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in Figure P15.24b. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the magnitudes of the forces acting on the top and on the bottom of the block due to the surrounding water? (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.arrow_forwardA beaker of mass mb containing oil of mass mo and density o rests on a scale. A block of iron of mass mFe suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forward
- A 1.00-kg beaker containing 2.00 kg of oil (density = 916.0 kg/m3) rests on a scale. A 2.00-kg block of iron suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forwardA backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pressure at the bottom of the pool. (b) Two persons with combined mass 150 kg enter the pool and float quietly there. No water overflows. Find the pressure increase at the bottom of the pool after they enter the pool and float.arrow_forward
- A spherical weather balloon is filled with hydrogen until its radius is 3.00 m. Its total mass including the instruments it carries is 15.0 kg. (a) Find the buoyant force acting on the balloon, assuming the density of air is 1.29 kg/m3. (b) What is the net force acting on the balloon and its instruments after the balloon is released from the ground? (c) Why does the radius of the balloon tend to increase as it rises to higher altitude?arrow_forwardA 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m 2.00 m 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and raft. (b) Write Newtons second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0.) (c) Calculate the numeric value for the buoyancy, B. (Seawater has density 1 025 kg/m3.) (d) Using the value of B and the weight w of the survivor, calculate the weight w, of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant, force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?arrow_forwardThe human brain and spinal cord are immersed in the cerebrospinal fluid. The fluid is normally continuous between the cranial and spinal cavities and exerts a pressure of 100 to 200 mm of H2O above the prevailing atmospheric pressure. In medical work, pressures are often measured in units of mm of H2O because body fluids, including the cerebrospinal fluid, typically have nearly the same density as water. The pressure of the cerebrospinal fluid can be measured by means of a spinal tap. A hollow tube is inserted into the spinal column, and the height lo which the fluid rises is observed, as shown in Figure P9.83. If the fluid ruses to a height of 160. mm, we write its gauge pressure as 160. mm H2O. (a) Express this pressure in pascals, in atmospheres, and in millimeters of mercury. (b) Sometimes it is necessary to determine whether an accident victim has suffered a crushed vertebra that is blocking the flow of cerebrospinal fluid in the spinal column. In other cases, a physician may suspect that a tumor or other growth is blocking the spinal column and inhibiting the flow of cerebrospinal fluid. Such conditions ran be investigated by means of the Queckensted test. In this procedure, the veins in the patients neck are compressed lo make the blood pressure rise in the brain. The increase in pressure in the blood vessels is transmitted to the cerebrospinal fluid. What should be the normal effect on the height of the fluid in the spinal tap? (c) Suppose compressing the veins had no effect on the level of the fluid. What might account for this phenomenon?arrow_forward
- A hot-air balloon consists of a basket banging beneath a large envelope filled with hot air. A topical hot-air balloon has a total mass of 545 kg. including passengers in its basket, and holds 2.55 103 m3 of hot air in its envelope. If the ambient air density is 1.25 kg/m3, determine the density of hot air inside the envelope when the balloon is neutrally buoyant. Neglect the volume of air displaced by the basket and | passengers.arrow_forwardYou are applying for a position with a sea rescue unit and are taking the qualifying exam. One question on the exam is about the use of a diving bell. The diving bell is in the shape of a cylinder with a vertical length of L = 2.50 m. It is closed at the upper circular end and open at the lower circular end. The hell is lowered from air into seawater ( = 1.025 g/cm3) and kept in its upright orientation as it is lowered. The air in the bell is initially at temperature Ti = 20.0C. The bell, with two humans inside, is lowered to a depth (measured to the bottom of the bell) of 27.0 fathoms, or h = 49.4 m. At this depth the water temperature is Tf = 4.0C, and the bell is in thermal equilibrium with the water. The exam question asks you to compare two situations: (i) No additional gas is added to the interior of the bell as it is submerged. Therefore, water enters the open bottom of the bell and the volume of the enclosed air decreases. (ii) The bell is fitted with pressurized air tanks, which deliver high-pressure air into the interior of the bell to keep the level of water at the bottom edge of the bell. This choice requires money and effort to attach the tanks. The exam question asks: Which scenario is better?arrow_forwardA wooden block floats in water, and a steel object is attached to the bottom of the block by a string as in Figure OQ15.1. If the block remains floating, which of the following statements are valid? (Choose all correct statements.) (a) The buoyant force on the steel object is equal to its weight. (b) The buoyant force on the block is equal to its weight. (c) The tension in the string is equal to the weight of the steel object. (d) The tension in the string is less than the weight of the steel object. (e) The buoyant force on the block is equal to the volume of water it displaces.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University