Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 41QTP
To determine
If friction is included in problem 15.40, will there be any difference in the final diameter. Discuss.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4)
Explain in detail the different types of friction?
2) Drawing: A round rod of annealed 302 stainless steel (K = 1300 MPa and n = 0.3) is being drawn
from a diameter of 15 mm to a diameter of 12 mm at a speed 0.25 m/s, using a semidie angle of 8º.
a. Calculate the percentage reduction, the applied force due to ideal deformation, friction, and
inhomogeneous deformation. Assume coefficient of friction of 0.1.
b. Calculate the required power, process efficiency, and the die pressure at the exit.
Chapter 15 Solutions
Manufacturing Engineering & Technology
Ch. 15 - How does extrusion differ from rolling and...Ch. 15 - Explain the difference between extrusion and...Ch. 15 - What is a spider die? What is it used for?Ch. 15 - Why are wires sometimes drawn in bundles?Ch. 15 - What is a dead-metal zone?Ch. 15 - Define the terms (a) cladding, (b) dummy block,...Ch. 15 - Why is glass a good lubricant in hot extrusion?Ch. 15 - What types of defects may occur in (a) extrusion...Ch. 15 - Describe the difference between direct and reverse...Ch. 15 - What is land? What is its function in a die?
Ch. 15 - How are tubes extruded? Can they also be drawn?...Ch. 15 - Prob. 12RQCh. 15 - What is the difference between piping and...Ch. 15 - What is impact extrusion?Ch. 15 - What is the pipe defect in extrusion?Ch. 15 - List the similarities and differences between...Ch. 15 - Explain why extrusion is a batch, or...Ch. 15 - The extrusion ratio, die geometry, extrusion...Ch. 15 - Explain why cold extrusion is an important...Ch. 15 - What is the function of a stripper plate in impact...Ch. 15 - Explain the different ways by which changing the...Ch. 15 - Glass is a good lubricant in hot extrusion. Would...Ch. 15 - How would you go about avoiding center-cracking...Ch. 15 - Table 15.1 gives temperature ranges for extruding...Ch. 15 - Will the force in direct extrusion vary as the...Ch. 15 - Comment on the significance of metal flow patterns...Ch. 15 - In which applications could you use the type of...Ch. 15 - What is the purpose of the land in a drawing die?...Ch. 15 - Can spur gears be made by (a) drawing and (b)...Ch. 15 - How would you prepare the end of a wire in order...Ch. 15 - What is the purpose of a dummy block in extrusion?...Ch. 15 - Describe your observations concerning Fig. 15.9.Ch. 15 - Occasionally, steel wire drawing will take place...Ch. 15 - Explain the advantages of bundle drawing.Ch. 15 - Under what circumstances would backward extrusion...Ch. 15 - Why is lubrication detrimental in extrusion with a...Ch. 15 - In hydrostatic extrusion, complex seals are used...Ch. 15 - Describe the purpose of a container liner in...Ch. 15 - Estimate the force required in extruding 7030...Ch. 15 - Assuming an ideal drawing process, what is the...Ch. 15 - Prob. 41QTPCh. 15 - Calculate the extrusion force for a round billet...Ch. 15 - Prob. 43QTPCh. 15 - A round wire made of a perfectly plastic material...Ch. 15 - Assume that the summary to this chapter is...Ch. 15 - Prob. 47SDPCh. 15 - Figure 15.2 shows examples of discrete parts that...Ch. 15 - The parts shown in Fig. 15.2 are economically...Ch. 15 - Survey the technical literature, and explain how...Ch. 15 - Prob. 51SDPCh. 15 - List the processes that are suitable for producing...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Explain (i) Angle of repose with a Neat diagram (ii) Impending Motion and Limiting Frictionarrow_forward* A cylindrical workpiece made of 1100-0 Aluminum that is 18 in high and 16 in in diameter and is to be reduced in height by 25% by open-die forging. Let the coefficient of friction be 0.15. K=20 mpa,n=0.35, Calculate the forging force.arrow_forwardPlease answer all partsarrow_forward
- Differentiate between dry friction and internal friction ?arrow_forwardIn a rolling mill, the rollers can exert a pressure of 219 MPa on the sheet being rolled. If the friction coefficient between the roller and the sheet metal is 0.35 and the flow stress of the steel being rolled is 120 MPa, what diameter rolls would reduce the thickness of 2mm thick sheet by 25% in a single pass?arrow_forwardA cylindrical workpiece of 100mm diameter and 150mm in height (Fig. 1) is upset (open die forged) at 1200° C to 100mm height disk (Fig. 2). Material of the workpiece is low carbon steel. A graphite lubricant reduces the friction to u=0.25. A press with 2-m/sec speeds is used to make this part. At 1200° C the material has the values for its C=48MPA and m=0.08 parameters Fig. 1 Height=150mm, Diameter=100mm Fig. 2 Height = 100mm, Diamete = ? mm (a) (b) (c) Determine the final diameter of the disk (see Fig. 2) Determine the true strain rate at the end of process. Calculate the flow stress at the end of the stroke.arrow_forward
- A 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.arrow_forwardIn a rolling operation using a roll of diameter 1.5 m, if a 35 mm thick plate cannot be reduced to less than 12 mm in a single pass then calculate the coefficient of friction btween the rolls and the plate.arrow_forward6.100 A 0.25-m-wide billet of 5052-O aluminum (K = 210 MPa, n = 0.13) is forged from a thickness of 30 mm to a thickness of 20 mm with a long die with a width of 75 mm. The coefficient of friction for the die/workpiece interface is 0.25. Calculate the maximum die pressure and required forging force.arrow_forward
- A piece with a height of 120 mm and a diameter of 75 mm can be increased to 80 mm in height by pile-forging.is reduced. The coefficient of friction between the workpiece and the mold is 0.13. Flow curve of the workpiece, 165It is defined by a strength coefficient of MPa and a hardening exponent of 0.24. force during operationCalculate at the moments given below and obtain the force-workpiece height graph(1) as soon as it reaches the yield point (yield strain = 0.002),(2) height h = 115 mm,(3) height h = 110 mm,(4) height h = 105mm,(5) height h = 100mm,(6) height h=95mm,(7) height h = 90 mm,(8) height h = 85mm,(9) height h = 80 mm,arrow_forwardA tube of 12 mm external diameter and 1mm thickness is to be reduced to 16 mm external diameter and 0.5 mm thickness. The die angle is 24º and plug angle is 16º. The coefficients of friction at die and tube interface and tube and plug (mandrel) interface is 0.5. The flow stress of tube material is 340 N/mm2 . The tube drawing is carried at a speed of 0.4 m/s. Calculate the fixed plugarrow_forwardBar stock of initial diameter = 90 mm is drawn with a draft = 15 mm. The draw die has an entrance angle = 18°, and the coefficient of friction at the work‑die interface = 0.08. The metal behaves as a perfectly plastic material with yield stress = 105 MPa. Determine (a) area reduction, (b) draw stress, (c) draw force required for the operation, and (d) power to perform the operation if exit velocity = 1.0 m/minarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License