Concept explainers
Members AB and BC of the truss shown are made of the same alloy. It is known that a 20-mm-square bar of the same alloy was tested to failure and that an ultimate load of 120 kN was recorded. If bar AB has a cross-sectional area of 225 mm2, determine (a) the factor of safety for bar AB, (b) the cross-sectional area of bar AC if it is to have the same factor of safety as bar AB.
Fig. P1.40 and P1.41
(a)
The factor of safety for bar AB.
Answer to Problem 41P
The factor of safety for bar AB is
Explanation of Solution
Given information:
The ultimate load
The factor of safety F.S is
The area (a) of square cross section is
Calculation:
Refer to Figure P1.40 in the text book.
Find the length of member
Sketch the free body diagram of truss as shown in Figure 1.
Here,
Refer to Figure 1.
Calculate the horizontal reaction A by using equilibrium Equation as follows:
Calculate the vertical reaction
Sketch the free body diagram of joint A as shown in Figure 2.
Refer to Figure P1.40 in the text book.
Refer to Figure 2.
Substitute
Refer to Figure 2.
Substitute
Find the area of test bar (A) using the relation:
Substitute
Find the ultimate load for the material using the formula:
Here,
Substitute
Determine the factor of safety for bar AB using the relation:
Here,
Modify Equation (5).
Substitute
Thus, the factor of safety for bar AB is
(b)
The cross sectional area of bar AC.
Answer to Problem 41P
The cross sectional area of bar AC is
Explanation of Solution
Calculation:
Show the expression factor of safety for bar AC using the relation:
Here,
Modify Equation (7).
Substitute
Thus, the cross sectional area of bar AC is
Want to see more full solutions like this?
Chapter 1 Solutions
EBK MECHANICS OF MATERIALS
- Please answer it with full explanation otherwise i will.......arrow_forward5.arrow_forwardThe plastic block shown is bonded to a rigid support and to a vertical plate to which a 55-kip load P is applied. Knowing that for the plastic used G= 150 ksi, determine the deflection of the platearrow_forward
- The steel frame shown has a diagonal brace BD with an area of 1612 sq.mm. Determine the largest allowable load P (in N) if the change in length of member BD is not to exceed 1.27 mm. Use x = 4.4m, y = 5.76m, and E = 197 Gpa. Express your answer in four decimal places. ... B D X.arrow_forward(a) Considering only buckling in the plane of the structure shown and using Euler’s formula, determine the value of θbetween 0 and 90° for which the allowable magnitude of the load P is maximum. (b) Determine the corresponding maximum value of P knowing that a factor of safety of 3.2 is required. Use E= 29 x 106 psi.arrow_forward16 The length of the 32-in.-diameter steel wire CD has been adjusted so that with no load applied, a gap of in. exists between the end B of the rigid beam ACB and a contact point E. Knowing that E = 29 × 106 psi, determine where a 50-lb block should be placed on the beam to cause contact between B and E.arrow_forward
- A W8 x 21 rolled-steel shape is used with the support and cable arrangement shown. Cables BC and BD are taught and prevent motion of point B in the xz plane. Knowing that L=24 ft, determine the allowable centric load P if a factor of safety of 2.2 is required. Use E = 29 x 106 psi. W8 x 21 Marrow_forwardA bar of 24-mm diameter and 400-mm length is acted upon by an axial load of 38 kN. The elongation of the bar and the change in diameter are measured as 0.165 mm and 0.0031 mm respectively. Determine (i) the Poisson's ratioarrow_forwardKnowing that σall=16 ksi, determine the maximum allowable value of the centric axial load P.arrow_forward
- PLEASE ANSWER NUMBER 1.MECH 222-MECHANICS OF DEFORMABLE BODIES: PLEASE GIVE DETAILED SOLUTIONS AND CORRECT ANSWERS. I WILL REPORT TO BARTLEBY THOSE TUTORS WHO WILL GIVE INCORRECT ANSWERS.arrow_forwardplease solve it clearly on a white sheet of paperarrow_forwardAn aluminum strut 2.50m long has a rectangular section 60mm by 30mm. A bolt through each end secures the strut so that it acts as a hinged column about an axis perpendicular to the 60 mm dimension and as a fixed ended column about an axis perpendicular to the 30mm dimension. Determine the safe central load using a factor of safety of 2.5 and E = 70 Gpa.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY