Concept explainers
(a)
The force constant of the spring.
(a)
Answer to Problem 28P
The force constant of the spring is
Explanation of Solution
Given that the force is
Since the horizontal force of
Write the expression for the force constant of the spring.
Here,
Conclusion:
Substitute
Therefore, the force constant of the spring is
(b)
The frequency of oscillation of the spring-object system.
(b)
Answer to Problem 28P
The frequency of oscillation of the spring-object system is
Explanation of Solution
Given that the mass of the object is
Write the expression for the frequency of oscillation of the spring-object system.
Here,
Conclusion:
Substitute
Therefore, the frequency of oscillation of the spring-object system is
(c)
The maximum speed of the object.
(c)
Answer to Problem 28P
The maximum speed of the object is
Explanation of Solution
Given that the displacement from the equilibrium position is
Write the expression for the maximum speed of the object executing
Here,
The amplitude of motion is equal to the initial displacement of the object which is
Write the expression for the angular frequency.
Use equation (IV) in (III).
Conclusion:
Substitute
Therefore, the maximum speed of the object is
(d)
The position where maximum speed occur.
(d)
Answer to Problem 28P
The position where maximum speed occur is
Explanation of Solution
For the oscillating spring-object system, the objects loses all its potential energy and gains maximum kinetic energy at the equilibrium point. Since the maximum kinetic energy corresponds to the maximum speed, the object gains maximum speed at the equilibrium position, which is described by the coordinate,
Conclusion:
Therefore, the position where maximum speed occur is
(e)
The maximum acceleration of the object.
(e)
Answer to Problem 28P
The maximum acceleration of the object is
Explanation of Solution
Write the expression for the maximum acceleration of the object executing SHM.
Here,
Use equation (IV) in (VI).
Conclusion:
Substitute
Therefore, the maximum acceleration of the object is
(f)
The position where the maximum acceleration occur.
(f)
Answer to Problem 28P
The position where the maximum acceleration occur is
Explanation of Solution
For the oscillating spring-object system, the maximum acceleration occurs where the object reverses its direction of motion. This happens only at the positions corresponding to the maximum displacement. Which is
Conclusion:
Therefore, the position where the maximum acceleration occur is
(g)
The total energy of the oscillating system.
(g)
Answer to Problem 28P
The total energy of the oscillating system is
Explanation of Solution
It is obtained that the force constant of the spring is
Write the expression for the energy of the spring-object oscillating system.
Here,
Conclusion:
Substitute
Therefore, the total energy of the oscillating system is
(h)
The speed of the object when its position is equal to one-third the maximum value.
(h)
Answer to Problem 28P
The speed of the object when its position is equal to one-third the maximum value is
Explanation of Solution
Write the expression for the speed at a given position of an object executing SHM in a spring.
Here,
Since the position is one-third the maximum value (
Conclusion:
Substitute
Therefore, the speed of the object when its position is equal to one-third the maximum value is
(i)
The acceleration of the object when its position is equal to one-third the maximum value.
(i)
Answer to Problem 28P
The speed of the object when its position is equal to one-third the maximum value is
Explanation of Solution
Write the expression for the acceleration at a given position of an object executing SHM in a spring.
Here,
Since the position is one-third the maximum value (
Conclusion:
Substitute
Therefore, the speed of the object when its position is equal to one-third the maximum value is
Want to see more full solutions like this?
Chapter 15 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- You hold a spherical salad bowl 85 cm in front of your face with the bottom of the bowl facing you. The salad bowl is made of polished metal with a 40 cm radius of curvature. Where is the image of your 2.0 cm tall nose located? What is image's size, orientation, and nature. I keep getting the answer -26.2, but it keeps saying it is wrong. I just want to know what i'm doing wrong.arrow_forwardA converging lens with a focal length of 6.70 cm forms an image of a 4.60 mm tall real object that is to the left of the lens. The image is 1.50 cm tall and erect. Where are the object and image located? Is the image real or virtual? Please show all stepsarrow_forwardNo chatgpt pls will upvotearrow_forward
- need help part earrow_forwardCritical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible. Experiment with changing c to find the critical damping constant. Use the same initial conditions as in the last problem. Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.arrow_forwardNASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…arrow_forward
- 12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?arrow_forwardneed help part darrow_forwardA cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following. Assume +x is in the eastward direction. (a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.) magnitude direction For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…arrow_forward
- î A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning