
Concept explainers
Review. A particle of mass 4.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a frictionless, horizontal surface with an amplitude of 2.00 m. A 6.00-kg object is dropped vertically on top of the 4.00-kg object as it passes through its equilibrium point. The two objects stick together. (a) What is the new amplitude of the vibrating system after the collision? (b) By what factor has the period of the system changed? (c) By how much does the energy of the system change as a result of the collision? (d) Account for the change in energy.
(a)

The new amplitude of the vibration system after collision.
Answer to Problem 71AP
The new amplitude of the vibration system after collision is
Explanation of Solution
Section 1:
To determine: The angular frequency of the system.
Answer: The angular frequency of the system is
Given information: The mass of the particle is
The formula for the angular frequency is,
Substitute
Section 2:
To determine: The maximum speed of the system.
Answer: The maximum speed of the system is
Given information: The mass of the particle is
The formula to calculate maximum speed is,
Substitute
Section 3:
To determine: The speed of the system when the objects stick together after the collision.
Answer: The speed of the system when the objects stick together after the collision is
Given information: The mass of the particle is
The formula to calculate speed after the collision is,
Substitute
Section 4:
To determine: The new amplitude of the vibration system after collision.
Answer: The new amplitude of the vibration system after collision is
Given info: The mass of the particle is
The law of conservation of energy is,
Rearrange the above equation for
Substitute
Conclusion:
Therefore, the new amplitude of the vibration system after collision is
(b)

The factor by which the period of system changed.
Answer to Problem 71AP
The factor by which the period of system changed is
Explanation of Solution
Section 1:
To determine: The initial period of system.
Answer: The initial period of system is
Given info: The mass of the particle is
The formula for the period of the system before collision is,
Substitute
Section 2:
To determine: The final period of system.
Answer: The final period of system is
Given info: The mass of the particle is
The formula for the period of the system after collision is,
Substitute
Section 3:
To determine: The factor by which the period of system changed.
Answer: The factor by which the period of system changed is
Given info: The mass of the particle is
The factor by which period is changed calculated as,
Substitute
Conclusion:
Therefore, the factor by which the period of system changed is
(c)

The energy changed of the system after the collision.
Answer to Problem 71AP
The energy of the system after the collision is decreased by factor
Explanation of Solution
Given info: The mass of the particle is
The formula for the energy of the system before collision is,
The formula for the energy of the system after collision is,
The chance in the energy is calculated as,
Substitute
Substitute
Conclusion:
Therefore, the energy of the system after the collision is decreased by factor
(d)

To explain: The change in the energy.
Explanation of Solution
The energy of the system is defined as the capacity to do any work. The energy is the sum of potential and the kinetic energy of the system.
The type of the collision of the system is inelastic due to this the kinetic energy does not remains conserved. The mechanical energy of the system is transformed into the internal energy. So there are energy losses due to conversion of energy.
Conclusion:
Therefore, the mechanical energy of the system is transformed into the internal energy in the perfectly inelastic collision.
Want to see more full solutions like this?
Chapter 15 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University





