Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 69AP
To determine
The angular frequency of the plank.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 15.1 - A block on the end of a spring is pulled to...Ch. 15.2 - Consider a graphical representation (Fig. 15.3) of...Ch. 15.2 - shows two curves representing particles undergoing...Ch. 15.2 - An object of mass m is hung from a spring and set...Ch. 15.4 - The ball in Figure 15.13 moves in a circle of...Ch. 15.5 - The grandfather clock in the opening storyline...Ch. 15 - Prob. 1OQCh. 15 - Prob. 2OQCh. 15 - Prob. 3OQCh. 15 - Prob. 4OQ
Ch. 15 - Prob. 5OQCh. 15 - Prob. 6OQCh. 15 - Prob. 7OQCh. 15 - Prob. 8OQCh. 15 - Prob. 9OQCh. 15 - Prob. 10OQCh. 15 - Prob. 11OQCh. 15 - Prob. 12OQCh. 15 - Prob. 13OQCh. 15 - Prob. 14OQCh. 15 - Prob. 15OQCh. 15 - Prob. 16OQCh. 15 - Prob. 17OQCh. 15 - Prob. 1CQCh. 15 - Prob. 2CQCh. 15 - Prob. 3CQCh. 15 - Prob. 4CQCh. 15 - Prob. 5CQCh. 15 - Prob. 6CQCh. 15 - Prob. 7CQCh. 15 - Prob. 8CQCh. 15 - Prob. 9CQCh. 15 - Prob. 10CQCh. 15 - Prob. 11CQCh. 15 - Prob. 12CQCh. 15 - Prob. 13CQCh. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - Prob. 14PCh. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - Prob. 17PCh. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - You attach an object to the bottom end of a...Ch. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - Prob. 23PCh. 15 - Prob. 24PCh. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 32PCh. 15 - Prob. 33PCh. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - Prob. 38PCh. 15 - Prob. 39PCh. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 41PCh. 15 - Prob. 42PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - Prob. 46PCh. 15 - Prob. 47PCh. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - Prob. 50PCh. 15 - Prob. 51PCh. 15 - Prob. 52PCh. 15 - Prob. 53PCh. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Prob. 55PCh. 15 - Prob. 56APCh. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Prob. 58APCh. 15 - Prob. 59APCh. 15 - Prob. 60APCh. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - Prob. 62APCh. 15 - Prob. 63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Prob. 65APCh. 15 - Prob. 66APCh. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - Prob. 69APCh. 15 - Prob. 70APCh. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - Prob. 72APCh. 15 - Prob. 73APCh. 15 - Prob. 74APCh. 15 - Prob. 75APCh. 15 - Review. A light balloon filled with helium of...Ch. 15 - Prob. 78APCh. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Prob. 80APCh. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 82APCh. 15 - Prob. 83APCh. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - Prob. 85CPCh. 15 - Prob. 86CPCh. 15 - Prob. 87CPCh. 15 - Prob. 88CPCh. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m rests on a frictionless, horizontal surface and is attached to two springs with spring constants k1 and k2 (Fig. P16.22). It is displaced to the right and released. Find an expression for the angular frequency of oscillation of the resulting simple harmonic motion. FIGURE P16.22 Problems 22 and 81.arrow_forwardA block of mass M is connected to a spring of mass m and oscillates in simple harmonic motion on a frictionless, horizontal track (Fig. P12.69). The force constant of the spring is k, and the equilibrium length is . Assume all portions of the spring oscillate in phase and the velocity of a segment of the spring of length dx is proportional to the distance x from the fixed end; that is, vx = (x/) v. Also, notice that the mass of a segment of the spring is dm = (m/) dx. Find (a) the kinetic energy of the system when the block has a speed v and (b) the period of oscillation. Figure P12.69arrow_forwardA block of mass m is connected to two springs of force constants k1 and k2 in two ways as shown in Figure P12.56. In both cases, the block moves on a frictionless table after it is displaced from equilibrium and released. Show that in the two cases the block exhibits simple harmonic motion with periods (a) T=2m(k1+k2)k1k2 and (b) T=2mk1+k2 Figure P12.56arrow_forward
- Which of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forwardWe do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forwardConsider the simplified single-piston engine in Figure CQ12.13. Assuming the wheel rotates with constant angular speed, explain why the piston rod oscillates in simple harmonic motion. Figure CQ12.13arrow_forward
- (a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forwardWhen a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forwardA very light rigid rod of length 0.500 m extends straight out from one end of a meter-stick. The combination is suspended from a pivot at the upper end of the rod as shown in Figure P12.31. The combination is then pulled out by a small angle and released. (a) Determine the period of oscillation of the system. (b) By what percentage does the period differ from the period of a simple pendulum 1.00 m long? Figure P12.31arrow_forward
- An object of mass m1 = 9.00 kg is in equilibrium when connected to a light spring of constant k = 100 N/m that is fastened to a wall as shown in Figure P12.67a. A second object, m2 = 7.00 kg, is slowly pushed up against m1, compressing the spring by the amount A = 0.200 m (see Fig. P12.67b). The system is then released, and both objects start moving to the right on the frictionless surface. (a) When m1 reaches the equilibrium point, m2 loses contact with m1 (see Fig. P12.67c) and moves to the right with speed v. Determine the value of v. (b) How far apart are the objects when the spring is fully stretched for the first time (the distance D in Fig. P12.67d)? Figure P12.67arrow_forwardA lightweight spring with spring constant k = 225 N/m is attached to a block of mass m1 = 4.50 kg on a frictionless, horizontal table. The blockspring system is initially in the equilibrium configuration. A second block of mass m2 = 3.00 kg is then pushed against the first block, compressing the spring by x = 15.0 cm as in Figure P16.77A. When the force on the second block is removed, the spring pushes both blocks to the right. The block m2 loses contact with the springblock 1 system when the blocks reach the equilibrium configuration of the spring (Fig. P16.77B). a. What is the subsequent speed of block 2? b. Compare the speed of block 1 when it again passes through the equilibrium position with the speed of block 2 found in part (a). 77. (a) The energy of the system initially is entirely potential energy. E0=U0=12kymax2=12(225N/m)(0.150m)2=2.53J At the equilibrium position, the total energy is the total kinetic energy of both blocks: 12(m1+m2)v2=12(4.50kg+3.00kg)v2=(3.75kg)v2=2.53J Therefore, the speed of each block is v=2.53J3.75kg=0.822m/s (b) Once the second block loses contact, the first block is moving at the speed found in part (a) at the equilibrium position. The energy 01 this spring-block 1 system is conserved, so when it returns to the equilibrium position, it will be traveling at the same speed in the opposite direction, or v=0.822m/s. FIGURE P16.77arrow_forwardConsider the system shown in Figure P16.68 as viewed from above. A block of mass m rests on a frictionless, horizontal surface and is attached to two elastic cords, each of length L. At the equilibrium configuration, shown by the dashed line, the cords both have tension FT. The mass is displaced a small amount as shown in the figure and released. Show that the net force on the mass is similar to the spring-restoring force and find the angular frequency of oscillation, assuming the mass behaves as a simple harmonic oscillator. You can assume the displacement is small enough to produce negligible change in the tension and length of the cords. FIGURE P16.68arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY