Concept explainers
(a)
The frequency of the damped oscillation.
(a)
Answer to Problem 47P
The frequency of the damped oscillation is
Explanation of Solution
Given that the mass of the oscillating object is
Write the expression for the angular frequency of the undamped oscillation.
Here,
Write the expression for the angular frequency of the damped oscillator.
Here,
Use equation (I) in (II).
Write the expression for the frequency of the damped oscillator.
Here,
Use equation (III) in (IV).
Conclusion:
Substitute
Therefore, the frequency of the damped oscillation is
(b)
The percentage by which the amplitude of oscillation decrease in each cycle.
(b)
Answer to Problem 47P
The amplitude of oscillation decrease in each cycle by
Explanation of Solution
Write the general expression for the damped oscillation.
Here,
In one complete cycle (period
Write the expression for the period of the oscillator.
Conclusion:
Substitute
Substitute
Therefore, the amplitude of oscillation decrease in each cycle by
(c)
The time interval that elapses while the energy of the system drops to
(c)
Answer to Problem 47P
The time interval that elapses while the energy of the system drops to
Explanation of Solution
Given that the mass of the oscillating object is
Since the energy is proportional to the square of the amplitude, the fractional rate of decrease of energy is twice as fast as the amplitude.
Write the expression for the energy of the damped oscillator.
Here,
Since the energy of the system drops to
Solve equation (X) for
Conclusion:
Substitute
Therefore, the time interval that elapses while the energy of the system drops to
Want to see more full solutions like this?
Chapter 15 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardIf the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately [1 − (8π2n2)−1] times the frequency of the corresponding undamped oscillator.arrow_forwardA vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on edge mounted on one end of a strip of spring steel (like a hacksaw blade) that lies in a vertical plane. The strips mass is small compared with that of the cube, but the strips length is large compared with the size of the cube. The other end of the strip is clamped to the frame of the washing machine that is not operating. A horizontal force of 1.43 N applied to the cube is required to hold it 2.75 cm away from its equilibrium position. If it is released, what is its frequency of vibration?arrow_forward
- Consider a damped harmonic oscillator. After four cycles the amplitude of the oscillator has dropped to 1/e of its initial value. Find the ratio of the frequency of the damped oscillator to its natural frequency.arrow_forwardThe total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forwardWhich of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forward
- A particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardThe amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forward
- The mechanical energy of an undamped block-spring system is constant as kinetic energy transforms to elastic potential energy and vice versa. For comparison, explain what happens to the energy of a damped oscillator in terms of the mechanical, potential, and kinetic energies.arrow_forwardUse the data in Table P16.59 for a block of mass m = 0.250 kg and assume friction is negligible. a. Write an expression for the force FH exerted by the spring on the block. b. Sketch FH versus t.arrow_forwardFor each expression, identify the angular frequency , period T, initial phase and amplitude ymax of the oscillation. All values are in SI units. a. y(t) = 0.75 cos (14.5t) b. vy (t) = 0.75 sin (14.5t + /2) c. ay (t) = 14.5 cos (0.75t + /2) 16.3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning