A light, cubical container of volume a 3 is initially filled with a liquid of mass density ρ as shown in Figure P15.5la. The cube is initially supported by a light string to form a simple pendulum of length L i , measured from the center of mass of the filled container, where L i >> a . The liquid is allowed to flow from the bottom of the container at a constant rate ( dM/dt ). At any time t , the level of the liquid in the container is h and the length of the pendulum is L . (measured relative to the instantaneous center of mass) as shown in Figure P15.51b. (a) Find the period of the pendulum as a function of time. (b) What is the period of the pendulum after the liquid completely runs out of the container? Figure P15.51
A light, cubical container of volume a 3 is initially filled with a liquid of mass density ρ as shown in Figure P15.5la. The cube is initially supported by a light string to form a simple pendulum of length L i , measured from the center of mass of the filled container, where L i >> a . The liquid is allowed to flow from the bottom of the container at a constant rate ( dM/dt ). At any time t , the level of the liquid in the container is h and the length of the pendulum is L . (measured relative to the instantaneous center of mass) as shown in Figure P15.51b. (a) Find the period of the pendulum as a function of time. (b) What is the period of the pendulum after the liquid completely runs out of the container? Figure P15.51
Solution Summary: The author explains the period of the pendulum as a function of time.
A light, cubical container of volume a3 is initially filled with a liquid of mass density ρ as shown in Figure P15.5la. The cube is initially supported by a light string to form a simple pendulum of length Li, measured from the center of mass of the filled container, where Li>> a. The liquid is allowed to flow from the bottom of the container at a constant rate (dM/dt). At any time t, the level of the liquid in the container is h and the length of the pendulum is L. (measured relative to the instantaneous center of mass) as shown in Figure P15.51b. (a) Find the period of the pendulum as a function of time. (b) What is the period of the pendulum after the liquid completely runs out of the container?
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.