Two identical steel balls, each of mass 67.4 g, are moving in opposite directions at 5.00 m/s. They collide head-on and bounce apart elastically. By squeezing one of the balls in a vise while precise measurements are made of the resulting amount of compression, you find that Hooke’s law is a good model of the ball’s elastic behavior. A force of 16.0 kN exerted by each jaw of the vise reduces the diameter by 0.200 mm. Model the motion of each ball, while the balls are in contact, as one-half of a cycle of simple harmonic motion . Compute the time interval for which the balls are in contact. (If yon solved Problem 57 in Chapter 7, compare your results from this problem with your results from that one.)
Two identical steel balls, each of mass 67.4 g, are moving in opposite directions at 5.00 m/s. They collide head-on and bounce apart elastically. By squeezing one of the balls in a vise while precise measurements are made of the resulting amount of compression, you find that Hooke’s law is a good model of the ball’s elastic behavior. A force of 16.0 kN exerted by each jaw of the vise reduces the diameter by 0.200 mm. Model the motion of each ball, while the balls are in contact, as one-half of a cycle of simple harmonic motion . Compute the time interval for which the balls are in contact. (If yon solved Problem 57 in Chapter 7, compare your results from this problem with your results from that one.)
Solution Summary: The author explains the time interval for which the balls are in contact. The mass of each steel ball is 67.4g.
Two identical steel balls, each of mass 67.4 g, are moving in opposite directions at 5.00 m/s. They collide head-on and bounce apart elastically. By squeezing one of the balls in a vise while precise measurements are made of the resulting amount of compression, you find that Hooke’s law is a good model of the ball’s elastic behavior. A force of 16.0 kN exerted by each jaw of the vise reduces the diameter by 0.200 mm. Model the motion of each ball, while the balls are in contact, as one-half of a cycle of simple harmonic motion. Compute the time interval for which the balls are in contact. (If yon solved Problem 57 in Chapter 7, compare your results from this problem with your results from that one.)
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Page 2
SECTION A
Answer ALL questions in Section A
[Expect to use one single-sided A4 page for each Section-A sub question.]
Question A1
SPA6308 (2024)
Consider Minkowski spacetime in Cartesian coordinates th
=
(t, x, y, z), such that
ds² = dt² + dx² + dy² + dz².
(a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V.
(b) Consider now the coordinate system x' (u, v, y, z) such that
u =t-x,
v=t+x.
[2 marks]
Write down the line element, the metric, the Christoffel symbols and the Riemann curvature
tensor in the new coordinates. [See the Appendix of this document.]
[5 marks]
(c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify
explicitly that V. V is invariant under the coordinate transformation.
Question A2
[5 marks]
Suppose that A, is a covector field, and consider the object
Fv=AAμ.
(a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a
coordinate transformation.
[5 marks]
(b)…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.