Concept explainers
15-7 Answer true or false.
- The cis and trans stereoisomers of 2-butene are achiral.
(a)
Interpretation:
To analyse whether the given statement- The cis and trans stereoisomers of 2-butene are achiral, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
- A plane of symmetry.
- A centre of symmetry
- n-fold alternating axis of symmetry.
Answer to Problem 15.7P
The cis and trans stereoisomers of 2-butene are achiral. Thus, statement is true.
Explanation of Solution
A stereocenter is defined as an atom having groups of suitable nature so that interchange of any two groups will give a stereoisomer. However all stereocenters are not tetrahedral. The unsaturaled carbon atoms of cis-trans But-2-ene are examples of the trigonal planar stereocenter. Since an interchange of groups at these stereocenters gives a strereoisomer.
or
or
Both cis-and trans but-2-ene have non-superimposable mirror images but posses an alternating axis of symmetry, therefore cis-and trans But-2-ene are achiral.
(b)
Interpretation:
To analyse whether the given statement- The carbonyl carbon of an aldehyde, ketone, carboxylic acid, or ester cannot be a stereocenter, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
The carbonyl carbon of an aldehyde, ketone, carboxylic acid, or ester cannot be a stereocenter. Thus, statement is true.
Explanation of Solution
A stereocenter is defined as an atom having groups of suitable nature so that interchange of any two groups will give a stereoisomer. However all stereocenters are not tetrahedral. But in case of aldehyde, ketone, carboxylic acids and ester, the carbonyl carbon is sp2 hybridized due to which it forms a planar structure. Planar structures a have plane of symmetry due to which they do not possess a stereocenter. Also in carbonyl group, carbonyl carbon is linked with oxygen by two bonds that is double bond. Therefore, all the four groups are not different.
(c)
Interpretation:
To analyse whether the given statement- Stereoisomers have the same connectivity of their atoms, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
Stereoisomers have the same connectivity of their atoms. Thus, statement is true.
Explanation of Solution
Stereoisomerism deals with the study of the spatial arrangements of the atoms in space. It does not mean to alter the connectivity of the atoms by mean of forming or breaking the bonds.
Since no bond breaking and forming takes place, thus the stereoisomers have the same connectivity of their atoms.
(d)
Interpretation:
To analyse whether the given statement- Constitutional isomers have the same connectivity of their atoms, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
Constitutional isomers do not have the same connectivity of their atoms. Thus, statement is false.
Explanation of Solution
Constitutional isomers are those isomers which have the different connectivity with atoms but have same molecular formula.
Example-
and
Both have same molecular formula, but they both differ in connectivity of atoms.
(e)
Interpretation:
To analyse whether the given statement-An unmarked cube is achiral, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
An unmarked cube is achiral. Thus, statement is true.
Explanation of Solution
Achiral are those compounds, that have elements of symmetry or a molecule is superimposable on its mirror image.
An unmarked cube is an achiral because it can be superimposable on its mirror image.
(f)
Interpretation:
To analyse whether the given statement-A human foot is chiral, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
A human foot is chiral. Thus, statement is true.
Explanation of Solution
If an object can be cut exactly into two equal halves so that half of its become mirror image of other half, it has plane of symmetry.
A human foot has a non-superimposable mirror image, thus human foot is chiral.
(g)
Interpretation:
To analyse whether the given statement-Every object in nature has a mirror image, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
Every object in nature has a mirror image. Thus, statement is true.
Explanation of Solution
If an object is superimposable on its mirror image, it cannot rotate plane polarized light and hence optically inactive.
If an object can be cut exactly into two equal halves so that half of its become mirror image of other half, it has plane of symmetry.
Every object in nature has a mirror image. It may or may not superimpose, and therefore the object may or may not be chiral.
(h)
Interpretation:
To analyse whether the given statement-The most common cause of chirality in organic molecules is the presence of a tetrahedral carbon atom with four different groups bonded to it, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
The most common cause of chirality in organic molecules is the presence of a tetrahedral carbon atom with four different groups bonded to it. Thus, statement is true.
Explanation of Solution
A carbon atom bonded in tetrahedral structure to four different substituents in a molecule is termed as chiral centre. It is not necessary all the time that the chiral centre is tetrahedral in shape; trigonal centres are also present in case of alkenes or unsaturated compounds.
Asterisk represents the chiral centre, due to which the molecule becomes chiral.
(i)
Interpretation:
To analyse whether the given statement-If a molecule is not superposable on its mirror image, the molecule is chiral, is true or false.
Concept Introduction:
A molecule is said to be chiral if it cannot be superimposed on its mirror image and if it does not possess an alternate axis of symmetry.
A carbon atom bonded in a tetrahedral structure to four different substituents in a molecule, it is called as a chiral centre or stereocentre.
If an organic molecule has more than one chiral carbon or chiral centre then the molecule may be achiral or chiral and it is depend upon whether the molecule has element of symmetry or not.
The elements of symmetry are-
Answer to Problem 15.7P
If a molecule is not superposable on its mirror image, the molecule is chiral. Thus, statement is true.
Explanation of Solution
A carbon atom bonded in tetrahedral structure to four different substituents in a molecule is termed as chiral centre. It is not necessary all the time that the chiral centre is tetrahedral in shape; trigonal centres are also present in case of alkenes or unsaturated compounds.
If an object is superimposable on its mirror image, it cannot rotate plane polarized light and hence optically inactive.
Want to see more full solutions like this?
Chapter 15 Solutions
Introduction to General, Organic and Biochemistry
- 17-54 Following is the structure of immunosuppressant FK-506, a molecule shown to disrupt calcineurin-mediated signal transduction in T-lymphocytes. (a) There are three carbon—carbon double bonds present in this molecule. Which of the three has the potential for cis/trans isomerism? Assign a cis or trans con?guration to each carbon-carbon double bond that has this possibility. (b) How many stereocenters are present in this molecule? How many stereoisomers are possible for it? (c) Are there any aromatic components in this molecule? (d) Consider the two carbon atoms marked with asterisks. Assign an R or S con?guration of each stereocenter. (e) Because of the presence of a 21-member ring, this molecule is described as a macrocycle. This ring is fashioned by three types of bonds, several carbon-carbon bonds, one ester, one hemiacetal, and one amide. Locate the ester and the hemiacetal. (f) Draw the structural formula of the long chain compound that would result if the hemiacetal were to be cleaved to an alcohol and a carbonyl group.arrow_forwardM8arrow_forwardMethionine is an amino acid used in the biosynthesis of proteins. The structural diagram for methionine is: H H H H H H H °N H H Using VSEPR theory, consider the stereochemical diagram that would form. Identify t geometric shape at the six identified locations on the above molecule of methionine. Hint: Treat each location as a separate central atom. Remember to add in lone pairs Review this example from your course. (Unit A Section 3 Lesson 8.2 - Digging Deeper) Geometric shape around atom 1 is tetrahedral Geometric shape around atom 2 is tetrahedral Geometric shape around atom 3 is tetrahedral Geometric shape around atom 4 is trigonal planar Geometric shape around atom 5 is tetrahedral Geometric shape around atom 6 is trigonal pyramidal +arrow_forward
- Consider the compound below. 2 NH₂ O Cl Part 1 of 3 Draw the structure showing stereochemistry, in which carbon 1 has R configuration and carbon 2 has S configuration. Part 2 of 3 Click and drag to start drawing a structure. CC Click and drag to start drawing a structure. X C C 3 Draw the structure showing stereochemistry, in which carbon 1 has S configuration and carbon 2 has R configuration. X Ś J C c+ C C c+arrow_forwardBelow are isomers of tert-butylcyclohexanol in conformational structures. Two are cis-2-tert- butylcyclohexanol and two are cis-3-tert-butylcyclohexanol. Indicate which is the more stable conformation for each pair, and indicate which of all four conformations is the most stable. A OH Ex HO B D OH OHarrow_forwardUsing a planar hexagon representation for the cyclohexane ring, draw structural formulas for the four cis,trans isomers.arrow_forward
- N,N-diethyl-m-toluamide (DEET) is the active ingredient in many insect repellent preparations. Following is one of the steps in its synthesis. In the box below draw the structure of the product of this reaction. H3C MgBr 1. CO2 2. H3O+ product • You do not have to consider stereochemistry. • You do not have to explicitly draw H atoms. • Do not include lone pairs in your answer. They will not be considered in the grading. • Draw the Grignard reagent as a covalent magnesium bromide. 90-87 0 + 11 ? n [arrow_forwardchem 3+1 Biology-MCB... Microsoft 365 [Review Topics] [References] » All Bookma Indicate whether the pair of structures shown represent stereoisomers, constitutional isomers, different conformations of the same compound, or the same conformation of a compound viewed from a different perspective. Note that cis, trans isomers are an example of stereoisomers. OCH3 H.C њС 1 осн LOCH3 stereoisomers OH CH3. H HO H constitutional isomers different conformations same conformation H OH H OH CH3 Submit Answer Retry Entire Group 9 more group attempts remainingarrow_forwardCircle all of the chiral centers (i.e., asymmetric carbon atoms) in the following compounds.arrow_forward
- Primidone (shown below) is an anticonvulsant used to control certain types of epileptic seizures. Question 13 of 67 What is the maximum number of stereoisomers possible for this structure? O= IZ NH 1 4 7 +/- stereoisomers 2 5 сл 8 6 9 0 C x 100arrow_forwardAlcohols can be converted to alkyl bromides using PBr3, which causes a complete inversion of stereochemistry. OH 10 PBr 3 Draw the stepwise mechanism for bromination of an alcohol. Be sure to include non-zero formal charges and lone pairs as necessary. : OH Br of 0 Br. Br Br Add/Remove step X Click and drag to st= drawing a structurarrow_forward15-11 In what way are constitutional isomers different from stereoisomers? In what way are they the same?arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co