Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 15.58E
Interpretation Introduction
Interpretation:
The reason as to why phosphorescence spectra are better for identifying useful electronic transitions for possible laser transitions than are fluorescence spectra is to be stated.
Concept introduction:
Fluorescence is a process in which light is emitted from a substance after it absorbs a light. The process involves excitation of electrons and then the relaxation of that electron. The light emitted from the substance has lower energy than the light absorbed by the substance as some radiationless decay takes place.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. Sketch a Jablonski diagram that illustrates the absorbance of a photon by a chemical species and
illustrates the fates of the chemical species after that photon absorption. Please label all transitions
appropriately and indicate a time scale for each transition.
Choose the correct answers and give a short explanation.
In microwave spectra:
- the separation of 2 lines in the spectrum for HF is less than for DF
- the rotation constant for the HF molecule is greater than for DF (D: deuterium)
- the spectrum lines separate as the rotational number increases
- energy levels approach as the rotational quantum number increases
Discuss the fundamentals of fluorescence
Chapter 15 Solutions
Physical Chemistry
Ch. 15 - Linearly polarized light can be assigned a...Ch. 15 - Linearly polarized light can be assigned a...Ch. 15 - Prob. 15.3ECh. 15 - Determine the value of R for deuterium (2H) and...Ch. 15 - Prob. 15.5ECh. 15 - Draw a Grotrian-type diagram for the first four...Ch. 15 - What is the value of the change in energy, E, for...Ch. 15 - Prob. 15.8ECh. 15 - List the possible values of L, ML, S, MS, J, and...Ch. 15 - Prob. 15.10E
Ch. 15 - Prob. 15.11ECh. 15 - Prob. 15.12ECh. 15 - Prob. 15.13ECh. 15 - What is the term symbol for the ground state of a...Ch. 15 - Prob. 15.15ECh. 15 - Prob. 15.16ECh. 15 - Prob. 15.17ECh. 15 - Prob. 15.18ECh. 15 - Prob. 15.19ECh. 15 - Prob. 15.20ECh. 15 - Prob. 15.21ECh. 15 - Prob. 15.22ECh. 15 - Use Hunds rules to predict the term symbol of the...Ch. 15 - Prob. 15.24ECh. 15 - Prob. 15.25ECh. 15 - An Mg atom is in the excited electron...Ch. 15 - Prob. 15.27ECh. 15 - Prob. 15.28ECh. 15 - Prob. 15.29ECh. 15 - Prob. 15.30ECh. 15 - Use group-theoretical arguments to determine the...Ch. 15 - The GeF molecule, which exists in the gas phase at...Ch. 15 - The SrH molecule in a 2+ electronic ground state....Ch. 15 - Prob. 15.34ECh. 15 - What are the values of and for NF in its 3...Ch. 15 - Prob. 15.36ECh. 15 - Determine the ground-state term symbol of the...Ch. 15 - Prob. 15.38ECh. 15 - Prob. 15.39ECh. 15 - Prob. 15.40ECh. 15 - Prob. 15.41ECh. 15 - Prob. 15.42ECh. 15 - The 1, 1'-diethyl-2, 2'-dicarbocyanine cation has...Ch. 15 - Prob. 15.44ECh. 15 - Naphthacene, C18H12, consists of four benzene...Ch. 15 - Prob. 15.46ECh. 15 - Prob. 15.47ECh. 15 - Construct the Hckel determinants for...Ch. 15 - Prob. 15.49ECh. 15 - Using the Internet, find a Hckel determinant...Ch. 15 - Prob. 15.51ECh. 15 - Explain why cyclopentadiene easily accepts an...Ch. 15 - Prob. 15.53ECh. 15 - Prob. 15.54ECh. 15 - Prob. 15.55ECh. 15 - Prob. 15.56ECh. 15 - Prob. 15.57ECh. 15 - Prob. 15.58ECh. 15 - Would the light from fireflies be considered an...Ch. 15 - Prob. 15.60ECh. 15 - Prob. 15.61ECh. 15 - Prob. 15.62ECh. 15 - How many 632.8-nm photons must a He-Ne laser emit...Ch. 15 - Prob. 15.64ECh. 15 - Green He-Ne lasers are also available; they emit...Ch. 15 - Blu-ray disks and high-density DVDs use an indium...Ch. 15 - Prob. 15.67ECh. 15 - Explain why X-ray lasers would be extremely...Ch. 15 - Prob. 15.69E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The following are sets of rotational quantum numbers (J,MJ,K). Label each indicated transition as either allowed or forbidden. Hint: Remember the rules for allowed values of the various quantum numbers. a (5,4,0)(3,6,0)b (8,2,2)(9,2,2) c (7,4,2)(7,4,2)d (4,2,5)(3,2,5)arrow_forwardWhat is the difference between continuous and discrete spectra?arrow_forwardThe following are sets of rotational quantum numbers (J,MJ,K). Label each indicated transition as either allowed or forbidden. Hint: Remember the rules for allowed values of the various quatum numbers. a (0,0,0)(1,1,0)b (0,0,0)(1,0,0) c (3,2,1)(3,1,1)d (4,4,1)(2,4,1)arrow_forward
- In high-temperature sources, sodium atoms emit a doublet with an average wavelength of 1139 nm. The transition responsible is from the 4s to 3p state. Set up a spreadsheet to calculate the ratio of the numberof excited atoms in the 4s state to the number in the ground 3s state over the temperature range from anacetylene-oxygen flame (3000°C) to the hottest part of an inductively coupled plasma source (8750°C).arrow_forwardAtomic absorption spectrophotometry is a method for the quantitative determination of metal ions. a) Describe in detail the AAS instrument and especially the parts that differ from a normal spectrophotometer. b) What light source is used in this technology and how does it work? c) What interferences can occur with this equipment? d) What is the theoretical basis of the AAS method?arrow_forwardThe lowest absorption energy of simple organic molecules can often be predicted by approximating the molecule as a 1D particle in a box. Consider the molecule 1,3-butadiene, which consist of four Carbon atoms in a conjugated chain. Butadiene absorbs light at a wavelength of 310 nm. Assume we can model this molecule by only considering its T electrons occupying the energy levels of a 1D particle in a box. Approximating the absorption energy as a highest occupied to lowest unoccupied (HOMO to LUMO) orbital transition, find the size of the "box" that would correspond to an excitation wavelength of 310 nm (you have just found an estimate for the length of the 1,3 butadiene molecule!). Give your final answer in units of angstrom. In your work, also comment on whether you would expect the molecule octatetraene, which contains 8 C atoms in a conjugated chain, to absorb light at a higher or lower wavelength.arrow_forward
- A vibrating HI molecule may be treated as an oscillating H atom and a stationary I atom. By what factor will the vibrational frequency of the molecule change when H is replaced by deuterium?arrow_forwardConsider the rotational spectrum of a molecule XY. If the first line in this spectrum is observed at 3.84235 cm, calculate the Internuclear distance In nm for the molecule XY. If the masses of X and Y are 19.92168 kg and 26.56136 kg respectively. 0.2761 nm 0.1356 nm 0.6953 nm 0.1131 nmarrow_forwardConsider a monochromatic laser pulse of 532-nm light. Experimentally, this green 532-nm light is generated in a crystal called an optical parametric oscillator (OPO) by halving the wavelength (A) of invisible 1064-nm infrared fight through a process called second harmonic generation. How are the frequency (1), the energy per photon (Ephoton), and the number of photons in each pulse (Nphotons) affected when the wavelength is changed from 1064 nm to 532 nm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning