
(a)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial and final energy level is
The magnetic quantum number for the initial and final energy level is
The selection will not allow this transition. Therefore, the transition
The transition
(b)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial and final energy level is
The value of
The selection will allow this transition. Therefore, the transition
The transition
(c)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial energy level is
The magnetic quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The selection will allow this transition. Therefore, the transition
The transition
(d)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial energy level is
The magnetic quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The selection will not allow this transition. Therefore, the transition
The transition
Want to see more full solutions like this?
Chapter 15 Solutions
Physical Chemistry
- N Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. NH O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic Garrow_forwardThe conjugate base of alkanes is called alkides. Correct?.arrow_forwardName these organic compounds: structure Br name CH3 CH3 ☐ ☐arrow_forward
- HH H-C H -C-H HH Draw the Skeletal Structures & H Name the molecules HH H H H H-C-C-C-C-C-C-H HHH HHH H H HHHHHHH H-C-C-C-C-C-C-C-C-C-H HHHHH H H H Harrow_forwarddont provide AI solution .... otherwise i will give you dislikearrow_forwardName these organic compounds: structure name CH3 CH3 ☐ F F CH3 ☐ O Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms ofarrow_forward
- Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. ZI NH Explanation Check O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic H O nonaromatic O aromatic O antiaromatic O nonaromatic ×arrow_forwardPart I. Draw the stepwise reaction mechanism of each product (a, b, c, d, e, f) HO HO OH НОН,С HO OH Sucrose HO CH₂OH H N N HO -H H -OH KMnO4, Heat H OH CH₂OH (d) Phenyl Osatriazole OH НОН,С HO HO + Glacial HOAC HO- HO CH₂OH OH HO Fructose (a) Glucose OH (b) H₂N HN (c) CuSO4-5H2O, ethanol H N N N HO ·H H OH H OH N CH₂OH OH (f) Phenyl Osazone H (e) Carboxy phenyl osatriazole Figure 2.1. Reaction Scheme for the Total Synthesis of Fine Chemicalsarrow_forwardWhich molecule is the most stable? Please explain.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
