
Concept explainers
(a)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(b)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(c)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(d)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Basic Chemistry (5th Edition)
- a. H3C CH3 H, 1.0 equiv. Br2arrow_forwardH3C. H3C CH 3 CH 3 CH3 1. LDA 2. PhSeCl 3. H2O2arrow_forwardPlease predict the products for each of the following reactions: 1.03 2. H₂O NaNH, 1. n-BuLi 2. Mel A H₂ 10 9 0 H2SO4, H₂O HgSO4 Pd or Pt (catalyst) B 9 2 n-BuLi ♡ D2 (deuterium) Lindlar's Catalyst 1. NaNH2 2. EtBr Na, ND3 (deuterium) 2. H₂O2, NaOH 1. (Sia)2BH с Darrow_forward
- in the scope of ontario SCH4U grade 12 course, please show ALL workarrow_forwardIs the chemical reaction CuCl42-(green) + 4H2O <==> Cu(H2O)42+(blue) + 4Cl- exothermic or endothermic?arrow_forwardIf we react tetraethoxypropane with hydrazine, what is the product obtained (explain its formula). State the reason why the corresponding dialdehyde is not used.arrow_forward
- drawing, no aiarrow_forwardIf CH3COCH2CH(OCH3)2 (4,4-dimethoxy-2-butanone) and hydrazine react, two isomeric products are formed. State their structure and which will be the majority.arrow_forward+ Reset Provide the correct IUPAC name for the compound shown here. 4-methylhept-2-ene (Z)- (E)- 1-6-5-2-3-4- cyclo iso tert- sec- di tri hept hex oct meth eth pent ane yne ene ylarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





