
Concept explainers
(a)
Interpretation:
Assign oxidation number to Al
Concept Introduction:
The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(b)
Interpretation:
Assign oxidation number to Al3+
Concept Introduction:
The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(c)
Interpretation:
Assign oxidation number to F-
Concept Introduction:
The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(d)
Interpretation:
Assign oxidation number to N2
Concept Introduction:
The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Basic Chemistry (5th Edition)
- Q5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forwardCalculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forward
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





