
Concept explainers
(a)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are:
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion.
(b)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(c)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion
(d)
Interpretation:
To assign the oxidation number for each of the elements present in the given compound.
Concept Introduction:
Oxidation number or oxidation state of an atom in a molecule is the positive or the negative charge that an atom would have possessed if the compound would have been ionic. There are many rules for assigning the oxidation state to the given atom in a molecule. Some of them are :
- The oxidation state of Group 1 elements is taken to be +1.
- The oxidation state of Group 2 elements is taken to be +2.
- The oxidation state of oxygen is always -2 in most of the compounds except peroxides.
- Oxidation state of halogens is taken to be -1 usually.
- The oxidation state of hydrogen is taken to be -1 when bonded to metals and +1 when bonded to non-metals.
- Any element when present in its elemental form has zero oxidation state.
- The oxidation state of Fluorine is taken to be -1 except when present in elemental state (F2).
- The sum of oxidation states of all the atoms present in a given molecule is equal to zero.
- In case of ions, the sum of oxidation state is equal to the total charge carried by the polyatomic ion

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Basic Chemistry (5th Edition)
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- Reaction Fill-ins Part 2! Predict the product(s) OR starting material of the following reactions. Remember, Hydride shifts are possible if/when a more stable carbocation can exist (depending on reaction mechanism)! Put your answers in the indicated boxes d. d. ง HCIarrow_forwardA cylinder contains 12 L of water vapour at 150˚C and 5 atm. The temperature of the water vapour is raised to 175˚C, and the volume of the cylinder is reduced to 8.5 L. What is the final pressure of the gas in atmospheres? assume that the gas is idealarrow_forwardOn the next page is an LC separation of the parabens found in baby wash. Parabens are suspected in a link to breast cancer therefore an accurate way to quantitate them is desired. a. In the chromatogram, estimate k' for ethyl paraben. Clearly indicate what values you used for all the terms in your calculation. b. Is this a "good" value for a capacity factor? Explain. c. What is the resolution between n-Propyl paraben and n-Butyl paraben? Again, indicate clearly what values you used in your calculation. MAU | Methyl paraben 40 20 0 -2 Ethyl paraben n-Propyl paraben n-Butyl paraben App ID 22925 6 8 minarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





