College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 14CQ
A spherical surface surrounds a point charge q. Describe what happens to the total flux through the surface if (a) the charge is tripled, (b) the volume of the sphere is doubled, (c) the surface is changed to a cube, (d) the charge is moved to another location inside the surface, and (e) the charge is moved outside the surface.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A charge of 170 µC is in the center of a cube with sides equal to 80.0 cm. There is no other charge near the cube. (a) Find the flow through each side of the cube. (b) The flow through the entire surface of the cube. (c) Explain what would happen to result b if the charge was not in the center of the bucket.
A very long uniform line of charge has charge per unit
length ₁ = 4.90 μC/m and lies along the x-axis. A
second long uniform line of charge has charge per unit
length X2 = -2.32 μC/m and is parallel to the x-axis at
y₁ = 0.400 m.
You may want to review (Page).
For related problem-solving tips and strategies, you may
want to view a Video Tutor Solution of
Field of a uniform line charge.
Problem 7: A point charge of 5.4 µC is placed at the origin (x, = 0) of a coordinate system, and another charge of-2.8 µC is placed
placed on the x-axis at x2 = 0.23 m.
Part (a) Where on the x-axis can a third charge be placed in meters so that the net force on it is zero?
x3 =
Part (b) What if both charges are positive; that is, what if the second charge is 2.8 µC?
x'3 =|
Chapter 15 Solutions
College Physics:
Ch. 15.1 - A suspended object A is attracted to a neutral...Ch. 15.2 - Object A has a charge of +2 C, and object B has a...Ch. 15.3 - A test charge of + 3 C is at a point P where the...Ch. 15.3 - A circular ring of charge of radius b has a total...Ch. 15.3 - A free electron and a free proton are placed in an...Ch. 15.4 - Rank the magnitudes of the electric field at...Ch. 15.8 - Calculate the magnitude of the flux of a constant...Ch. 15.8 - Suppose the electric field of Quick Quiz 15.7 is...Ch. 15.8 - Find the electric flux through the surface in...Ch. 15.8 - For a closed surface through which the net flux is...
Ch. 15 - A glass object receives a positive charge of +3 nC...Ch. 15 - The fundamental charge is e = 1.60 1019 C....Ch. 15 - Each of the following statements is related to...Ch. 15 - Two uncharged, conducting spheres are separated by...Ch. 15 - Four concentric spheres S1, S2, S3, and S4 are...Ch. 15 - IF a suspended object A is attracted to a charged...Ch. 15 - Positive charge Q is located at the center of a...Ch. 15 - Consider point A in Figure CQ15.8 located an...Ch. 15 - A student stands on a thick piece of insulating...Ch. 15 - In fair weather, there is an electric field at the...Ch. 15 - A charged comb often attracts small bits of dry...Ch. 15 - Why should a ground wire be connected to the metal...Ch. 15 - There are great similarities between electric and...Ch. 15 - A spherical surface surrounds a point charge q....Ch. 15 - If more electric field lines leave a Gaussian...Ch. 15 - A student who grew up in a tropical country and is...Ch. 15 - What happens when a charged insulator is placed...Ch. 15 - A 7.50-nC charge is located 1.80 m from a 4.20-nC...Ch. 15 - A charged particle A exerts a force of 2.62 N to...Ch. 15 - Rocket observations show that dust particles in...Ch. 15 - A small sphere of mass m = 7.50 g and charge q1 =...Ch. 15 - The nucleus of 8Be, which consists of 4 protons...Ch. 15 - A molecule of DNA (deoxyribonucleic acid) is 2.17...Ch. 15 - Two uncharged spheres are separated by 2.00 in. If...Ch. 15 - Four point charges are at the corners of a square...Ch. 15 - Two small identical conducting spheres are placed...Ch. 15 - Calculate the magnitude and direction of the...Ch. 15 - Three charges are arranged as shown in Figure...Ch. 15 - A positive charge q1 = 2.70 C on a frictionless...Ch. 15 - Three point charges are located at the corners of...Ch. 15 - Two identical metal blocks resting on a...Ch. 15 - Two small metallic spheres, each of mass m = 0.20...Ch. 15 - Panicle A of charge 3.00 104 C is at the origin,...Ch. 15 - A small object of mass 3.80 g and charge 18.0 C is...Ch. 15 - (a) Determine the electric field strength at a...Ch. 15 - An electric field of magnitude 5.25 105 N/C...Ch. 15 - An electron is accelerated by a constant electric...Ch. 15 - Charge q1 = 1.00 nC is at x1 = 0 and charge q2 =...Ch. 15 - A small sphere of charge q = +68 C and mass m =...Ch. 15 - A proton accelerates from rest in a uniform...Ch. 15 - (a) Find the magnitude and direction of the...Ch. 15 - Four point charges are located at the corners of a...Ch. 15 - A helium nucleus of mass m = 6.64 1027 kg and...Ch. 15 - A charged dust particle at rest in a vacuum is...Ch. 15 - A particle of mass 1.00 109 kg and charge 3.00 pC...Ch. 15 - Two equal positive charges are at opposite corners...Ch. 15 - Three point charges are located on a circular are...Ch. 15 - In Figure P15.31, determine the point (other than...Ch. 15 - Three charges are at the corners of an equilateral...Ch. 15 - Three identical charges (q = 5.0 C.) lie along a...Ch. 15 - Figure P15.31 shows the electric held lines for...Ch. 15 - (a) Sketch the electric field lines around an...Ch. 15 - (a) Sketch the electric field pattern around two...Ch. 15 - Two point charges are a small distance apart. (a)...Ch. 15 - Three equal positive charges are at the corners of...Ch. 15 - Refer 10 Figure 15.20. The charge lowered into the...Ch. 15 - The dome of a Van de Graaff generator receives a...Ch. 15 - If the electric field strength in air exceeds 3.0 ...Ch. 15 - In the Millikan oil-drop experiment illustrated in...Ch. 15 - A Van de Graaff generator is charged so that a...Ch. 15 - A uniform electric field of magnitude E = 435 N/C...Ch. 15 - An electric field of intensity 3.50 kN/C is...Ch. 15 - The electric field everywhere on the surface of a...Ch. 15 - Four closed surfaces, S1 through S4, together with...Ch. 15 - A charge q = +5.80 C is located at the center of a...Ch. 15 - Figure P15.49 shows a closed cylinder with...Ch. 15 - A charge of q = 2.00 109 G is spread evenly on a...Ch. 15 - A point charge q is located at the center of a...Ch. 15 - A charge of 1.70 102 C is at the center of a cube...Ch. 15 - Suppose the conducting spherical shell of Figure...Ch. 15 - A very large nonconducting plate lying in the...Ch. 15 - In deep spare, two spheres each of radius 5.00 m...Ch. 15 - A nonconducting, thin plane sheet of charge...Ch. 15 - Three point charges are aligned along the x-axis...Ch. 15 - A small plastic ball of mass m = 2.00 g is...Ch. 15 - A proton moving at v0 = 1.50 106 m/s enters the...Ch. 15 - The electrons in a particle beam each have a...Ch. 15 - A point charge +2Q is at the origin and a point...Ch. 15 - A 1.00-g cork ball having a positive charge of...Ch. 15 - Two 2.0-g spheres are suspended by 10.0-cm-long...Ch. 15 - a point charge of magnitude 5.00 C is at the...Ch. 15 - Two hard rubber spheres, each of mass m = 15.0 g,...Ch. 15 - Prob. 66APCh. 15 - A solid conducting sphere of radius 2.00 cm has a...Ch. 15 - Three identical point charges, each of mass m =...Ch. 15 - Each of the electrons in a particle beam has a...Ch. 15 - Protons are projected with an initial speed v0 = 9...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardA solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forward(a) A small polystyrene bead with a charge of -60.0 nC is at the center of an insulating glass spherical shell with an inner radius of 20.0 cm and an outer radius of 34.0 cm. The glass material of the spherical shell is charged, with a uniform volume charge density of -1.70 µC/m3. A proton moves in a circular orbit just outside the spherical shell. What is the speed of the proton (in m/s)? m/s (b) What If? Suppose the spherical shell carries a positive charge density instead. What is the maximum value the charge density (in µC/m3) the spherical shell can have below which a proton can orbit the spherical shell? HC/m3arrow_forward
- Charge is placed on the surface of a 2.7-cm radius isolated conducting sphere. The surface charge density is uniform and has the value 6.9x10-6 C/m². The total charge on the sphere is: O 6.3x10-8 C O 4.7x10-8 C O 2.1x10-8 C O 5.6x10-8 Carrow_forwardConsider an infinite line of charge, with linear charge density +3.5 x 10-12 C/m. This line of charge is parallel to the z-axis and intersects the x-y plane on the x axis at x = -6.7 m. Now consider a second infinite line of charge, with linear charge density +2 x 10-12 C/m. This line of charge is also parallel to the z-axis and intersects the x-y plane on the x axis at x = +14.3 m. Calculate the magnitude of electric field, in N/C, at the origin. Use ε 0 = 8.9 x 10-12 F/m. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardTwo identical conducting spheres labeled A and B have net charges q1 = 4 q. (>0) and q2 = -6 9o, respectively. A third conducting sphere identical to the others is initially uncharged. This third sphere is touched first to the first sphere and then to the second sphere before being removed from the area. The net charge on the second sphere will now be x 9o.arrow_forward
- Two point charges lie along the x-axis. A charge of q1 = - 10 μC is at x1 = 6 m, and a charge of q2 = - 6 μC is at x2= - 8 m. Locate a point on the x-axis where the total electric field is zero (other than infinity).arrow_forward(a) A small amber bead with a mass of 14.4 g and a charge of -0.65 μC is suspended in equilibrium above the center of a large, horizontal sheet of glass that has a uniform charge density on its surface. Find the charge per unit area on the glass sheet (in μC/m²). μC/m² (b) What If? What are the magnitude and direction of the acceleration of the piece of amber if its charge is doubled? (Enter the magnitude in m/s².) magnitude m/s² direction -Select---arrow_forwardConsider an infinite line of charge, with linear charge density +22.5 x 10-12 C/m. This line of charge is parallel to the z-axis and intersects the x-y plane on the x axis at x = -5.6 m. Now consider a second infinite line of charge, with identical linear charge density +22.5 x 10-12 C/m. This line of charge is also parallel to the z-axis and intersects the x-y plane on the x axis at x = +5.6 m. Calculate the magnitude of electric field, in N/C, on the y-axis at y = 2.8 m. Use ε 0 = 8.9 x 10-12 F/m. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forward
- Problem 5: A thin rod of length L = 1.9 m lies along the positive y-axis with one end at the origin. The rod carries a uniformly distributed charge of Q1 = 5.2 µC. A point charge Q2 = 10.4 uC is located on the positive x-axis a distance a = 0.45 m from the origin. Refer to the figure. dy y X a Part (a) Consider a thin slice of the rod of thickness dy located a distance y away from the origin. What is the direction of the force on the point charge due to the charge on this thin slice? MultipleChoice : 1) Along the positive x-axis 2) Above the negative x-axis 3) Below the positive x-axis 4) Not enough information to determine 5) There is no force between the point charge and the slice of the rod 6) Above the positive x-axis 7) Below the negative x-axis Part (b) Choose the correct equation for x-component of the force, dFx, on the point charge due to the thin slice of the rod. SchematicChoice : kQ1Q2ady Q1Q2ady kQ,Q2ady dF dF, = L(a² + y²) dFx 3 3 L(a² + y²)ž L(a² + y²)ž kQ1Q2ydy kQ,Qzydy…arrow_forwardA point charge of 4.9 μC is placed at the origin (x1 = 0) of a coordinate system, and another charge of –1.3 μC is placed placed on the x-axis at x2 = 0.21 m. a) Where on the x-axis can a third charge be placed in meters so that the net force on it is zero? b) What if both charges are positive; that is, what if the second charge is 1.3 μC?arrow_forwardProblem 6: A conducting sphere of radius r1 = 0.18 m has a total charge of Q = 1.4 μC. A second uncharged conducting sphere of radius r2 = 0.42 m is then connected to the first by a thin conducting wire. The spheres are separated by a very large distance compared to their size. What is the total charge on sphere two, Q2 In coulombsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY