College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 56AP
A nonconducting, thin plane sheet of charge carries a uniform charge per unit area of 5.20 μC/m2 as in Figure 15.30. (a) Find the electric field at a distance of 8.70 cm from the plate. (b) Explain whether your result changes as the distance from the sheet is varied.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A nonconducting, thin plane sheet of charge carries a uniform charge per unit area of 5.20 μC/m2 as in Figure 15.30. (a) Find the electric field at a distance of 8.70 cm from the plate. (b) Explain whether your result changes as the distance from the sheet is varied.
A nonconducting, thin plane sheet of charge carries a uniform charge per unit area of 5.20 μC/m2 as in Figure 15.30. (a) Find the electric field at a distance of 8.70 cm from the plate. (b) Explain whether your result changes as the distance from the sheet is varied.
Charge of a uniform density (11 pC/m?) is distributed over the entire xy plane. A charge of uniform density (6 pC/m2) is distributed over the parallel plane defined by z = 2.0 m. Determine the magnitude of the electric field for any point with z = 3.0 m.
Chapter 15 Solutions
College Physics:
Ch. 15.1 - A suspended object A is attracted to a neutral...Ch. 15.2 - Object A has a charge of +2 C, and object B has a...Ch. 15.3 - A test charge of + 3 C is at a point P where the...Ch. 15.3 - A circular ring of charge of radius b has a total...Ch. 15.3 - A free electron and a free proton are placed in an...Ch. 15.4 - Rank the magnitudes of the electric field at...Ch. 15.8 - Calculate the magnitude of the flux of a constant...Ch. 15.8 - Suppose the electric field of Quick Quiz 15.7 is...Ch. 15.8 - Find the electric flux through the surface in...Ch. 15.8 - For a closed surface through which the net flux is...
Ch. 15 - A glass object receives a positive charge of +3 nC...Ch. 15 - The fundamental charge is e = 1.60 1019 C....Ch. 15 - Each of the following statements is related to...Ch. 15 - Two uncharged, conducting spheres are separated by...Ch. 15 - Four concentric spheres S1, S2, S3, and S4 are...Ch. 15 - IF a suspended object A is attracted to a charged...Ch. 15 - Positive charge Q is located at the center of a...Ch. 15 - Consider point A in Figure CQ15.8 located an...Ch. 15 - A student stands on a thick piece of insulating...Ch. 15 - In fair weather, there is an electric field at the...Ch. 15 - A charged comb often attracts small bits of dry...Ch. 15 - Why should a ground wire be connected to the metal...Ch. 15 - There are great similarities between electric and...Ch. 15 - A spherical surface surrounds a point charge q....Ch. 15 - If more electric field lines leave a Gaussian...Ch. 15 - A student who grew up in a tropical country and is...Ch. 15 - What happens when a charged insulator is placed...Ch. 15 - A 7.50-nC charge is located 1.80 m from a 4.20-nC...Ch. 15 - A charged particle A exerts a force of 2.62 N to...Ch. 15 - Rocket observations show that dust particles in...Ch. 15 - A small sphere of mass m = 7.50 g and charge q1 =...Ch. 15 - The nucleus of 8Be, which consists of 4 protons...Ch. 15 - A molecule of DNA (deoxyribonucleic acid) is 2.17...Ch. 15 - Two uncharged spheres are separated by 2.00 in. If...Ch. 15 - Four point charges are at the corners of a square...Ch. 15 - Two small identical conducting spheres are placed...Ch. 15 - Calculate the magnitude and direction of the...Ch. 15 - Three charges are arranged as shown in Figure...Ch. 15 - A positive charge q1 = 2.70 C on a frictionless...Ch. 15 - Three point charges are located at the corners of...Ch. 15 - Two identical metal blocks resting on a...Ch. 15 - Two small metallic spheres, each of mass m = 0.20...Ch. 15 - Panicle A of charge 3.00 104 C is at the origin,...Ch. 15 - A small object of mass 3.80 g and charge 18.0 C is...Ch. 15 - (a) Determine the electric field strength at a...Ch. 15 - An electric field of magnitude 5.25 105 N/C...Ch. 15 - An electron is accelerated by a constant electric...Ch. 15 - Charge q1 = 1.00 nC is at x1 = 0 and charge q2 =...Ch. 15 - A small sphere of charge q = +68 C and mass m =...Ch. 15 - A proton accelerates from rest in a uniform...Ch. 15 - (a) Find the magnitude and direction of the...Ch. 15 - Four point charges are located at the corners of a...Ch. 15 - A helium nucleus of mass m = 6.64 1027 kg and...Ch. 15 - A charged dust particle at rest in a vacuum is...Ch. 15 - A particle of mass 1.00 109 kg and charge 3.00 pC...Ch. 15 - Two equal positive charges are at opposite corners...Ch. 15 - Three point charges are located on a circular are...Ch. 15 - In Figure P15.31, determine the point (other than...Ch. 15 - Three charges are at the corners of an equilateral...Ch. 15 - Three identical charges (q = 5.0 C.) lie along a...Ch. 15 - Figure P15.31 shows the electric held lines for...Ch. 15 - (a) Sketch the electric field lines around an...Ch. 15 - (a) Sketch the electric field pattern around two...Ch. 15 - Two point charges are a small distance apart. (a)...Ch. 15 - Three equal positive charges are at the corners of...Ch. 15 - Refer 10 Figure 15.20. The charge lowered into the...Ch. 15 - The dome of a Van de Graaff generator receives a...Ch. 15 - If the electric field strength in air exceeds 3.0 ...Ch. 15 - In the Millikan oil-drop experiment illustrated in...Ch. 15 - A Van de Graaff generator is charged so that a...Ch. 15 - A uniform electric field of magnitude E = 435 N/C...Ch. 15 - An electric field of intensity 3.50 kN/C is...Ch. 15 - The electric field everywhere on the surface of a...Ch. 15 - Four closed surfaces, S1 through S4, together with...Ch. 15 - A charge q = +5.80 C is located at the center of a...Ch. 15 - Figure P15.49 shows a closed cylinder with...Ch. 15 - A charge of q = 2.00 109 G is spread evenly on a...Ch. 15 - A point charge q is located at the center of a...Ch. 15 - A charge of 1.70 102 C is at the center of a cube...Ch. 15 - Suppose the conducting spherical shell of Figure...Ch. 15 - A very large nonconducting plate lying in the...Ch. 15 - In deep spare, two spheres each of radius 5.00 m...Ch. 15 - A nonconducting, thin plane sheet of charge...Ch. 15 - Three point charges are aligned along the x-axis...Ch. 15 - A small plastic ball of mass m = 2.00 g is...Ch. 15 - A proton moving at v0 = 1.50 106 m/s enters the...Ch. 15 - The electrons in a particle beam each have a...Ch. 15 - A point charge +2Q is at the origin and a point...Ch. 15 - A 1.00-g cork ball having a positive charge of...Ch. 15 - Two 2.0-g spheres are suspended by 10.0-cm-long...Ch. 15 - a point charge of magnitude 5.00 C is at the...Ch. 15 - Two hard rubber spheres, each of mass m = 15.0 g,...Ch. 15 - Prob. 66APCh. 15 - A solid conducting sphere of radius 2.00 cm has a...Ch. 15 - Three identical point charges, each of mass m =...Ch. 15 - Each of the electrons in a particle beam has a...Ch. 15 - Protons are projected with an initial speed v0 = 9...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The nonuniform charge density of a solid insulating sphere of radius R is given by = cr2 (r R), where c is a positive constant and r is the radial distance from the center of the sphere. For a spherical shell of radius r and thickness dr, the volume element dV = 4r2dr. a. What is the magnitude of the electric field outside the sphere (r R)? b. What is the magnitude of the electric field inside the sphere (r R)?arrow_forwardThe surface charge density on a long straight metallic pipe is . What is the electric field outside and inside the pipe? Assume the pipe has a diameter of 2a.arrow_forwardA thick insulating spherical shell of inner radius a=2.4R and outer radius b=6.1R has a uniform charge density p. pR What is the magnitude of the electric field at r=5.6 R ? Express your answer using one decimal place in units of €oarrow_forward
- A thick insulating spherical shell of inner radius a=2.1R and outer radius b=9.9R has a uniform charge density p. pR What is the magnitude of the electric field at r=4.5 R ? Express your answer using one decimal place in units ofarrow_forwardPositive charge is distributed in a sphere of radius R that is centered at the origin. Inside the sphere, the electric field is Ē(r) = kr-1/4 f, where k is a positive constant. There is no charge outside the sphere. a) How is the charge distributed inside the sphere? In particular, find an equation for the charge density, p. b) Determine the electric field, E(r), for r > R (outside the sphere). c) What is the potential difference between the center of the sphere (r = 0) and the surface of the sphere (r = R)? d) What is the energy stored in this electric charge configuration?arrow_forwardFind the electric field at the origin of the x,y-plane for charge distributions (a) and (b), see the figures shown below. The field is produced (a) by a thin half-circle with a radius of 12.5 cm and the linear charge density K = 18.5 pC/cm and (b) by a thin quarter-circle with the same radius and the linear charge density K = -18.5 pC/cm. K>0 y 0 (a) For the charge distribution (a): The x-component of Ea, Ea,x The y-component of Ea, Ea,y ² For the charge distribution (b): The x-component of Eb, Eb.x = = The y-component of Eb, Eb,y = K<0 Units Select an answer ✓ Units Select an answer ✓ Units Select an answer Units Select an answer 0 (b)arrow_forward
- Find the electric field at the origin of the x,y-plane for charge distributions (a) and (b), see the figures shown below. The field is produced (a) by a thin half-circle with a radius of 15 cm and the linear charge density K-10 pc/cm and (b) by a thin quarter-circle with the same radius and the linear charge density K = -10 pc/cm. K>0 (a) For the charge distribution (a): The x-component of Ea. Ea,x= The y-component of Ea, Ea,y= For the charge distribution (b): The x-component of Eb, Eb,x- The y-component of Eb, Eb,y = Units N/C Units N/C Units N/C Units N/C K<0 (b)arrow_forwardA thin, square, conducting plate 47.0 cm on a side lies in the xy plane. A total charge of 3.50 10-8 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. C/m2(b) Find the electric field just above the plate. magnitude N/C direction (c) Find the electric field just below the plate. magnitude N/C directionarrow_forwardA nonconducting solid sphere of radius 10.7 cm has a uniform volume charge density. The magnitude of the electric field at 21.4 cm from the sphere's center is 2.18 103 N/C. (a) What is the sphere's volume charge density? (b) Find the magnitude of the electric field at a distance of 5.00 cm from the sphere's center.arrow_forward
- The electric field at a distance of 0.154 m from the surface of an insulating solid sphere of radius 0.385 m is 1970 N/C. Assuming that the charge on the sphere is uniformly distributed, a) what is the charge density within it? b) Calculate the electric field inside the sphere at a distance of 0.150 m from the center.arrow_forwardA sphere of radius 5.00 cm carries charge +3 nC. Calculate the electric-field magnitude at a distance 4.00 cm from the center of the sphere and at a distance 6.00 cm from the center of the sphere if the sphere is (a) a solid insulator with the charge spread uniformly throughout its volume and (b) a solid conductor. A. a) E = 8630 N/C (inside) 7500 N/C (outside), b) E =0 N/C (inside), E= 7500 N/C (outside) B. a) E = 7500 N/C, b) E = 0N/C C. a) E = 0N/C, b) E = 5090N/C D. a) E = 4800 N/C, b) E = 4800 N/Carrow_forwardA thin, square, conducting plate 54.0 cm on a side lies in the xy plane. A total charge of 3.20 x 10-8 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. C/m² (b) Find the electric field just above the plate. magnitude N/C direction upward ◊ (c) Find the electric field just below the plate. magnitude N/C direction downward ↑arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY