CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.7, Problem 133RP
Humid air at 101.3 kPa, 36°C dry bulb and 65 percent relative humidity is cooled at constant pressure to a temperature 10°C below its dew-point temperature. Sketch the psychrometric diagram for the process and determine the heat transfer from the air, in kJ/kg dry air.
FIGURE P14–133
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One m3/s of air at 12°C and 50% RH is heated and humidified using saturated steam at 100 °C to a final state of 38°C and 50% relative humidity.
Sketch the process on the psychrometric chart and calculate the following:
(a) Mass flow rate
(b) Steam flow rate needed
(c) Heating coil capacity
Air at 0° C and 95% relative humidity has to be heated and humidified to 25° C and 40% relative humidity by the following three processes: (a) preheating; (b) adiabatic saturation in a recirculated water air-washer; and (c) reheating to final state. Calculate: 1. The heating required in two heaters; 2. The makeup water required in washer and temperature of washer. Assume effectiveness of washer as 80 per cent
Air at 30 ºC with a dew point of 14ºC enters a textile dryer at a rate of 15.3 m3/min and leaves saturated. The dryer operates adiabatically. Use the psychrometric chart to determine the absolute humidity and humid volume of the entering air, and then use the results to determine the flow rate of dry air (kg/min) through the dryer, thefinal temperature of the air, and the rate (kg/min) at which water is evaporated in the dryer.
Chapter 14 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cooling tower receives 6 kg/s of water of 60oC. Air enters the tower at 32oC DB and 27oC WB temperatures and leaves at 50oC and 90 per cent relative humidity. The cooling efficiency is 60.6 per cent. Determine: (a) the mass flow rate of air entering, and (b) the quantity of make-up water required.arrow_forwardThe cooling load of a building is estimated at 60 000 Btu/hr, of which 25 % is latent heat. The space is to be maintained at 75 F db and S0 % relative humidity. The outdoor air is at 110 F db and 40 % relative humidity. The air is supplied to the space at 55 F. If the sensible heat factor of the cooling equipment is SHF-0.6 and by using the psychrometric chart The supplied air mass tlow rate is around Choose The outside mass flow rate is around Choose. The cooling coil total heat rate is around Choose The sensible heat rate of the cooling coil is around Choose The latent heat rate of the cooling coil is around: Choosearrow_forwardRead the question carefully and give me right solution according to the question. One m3/s of air at 12°C and 50% RH is heated and humidified using saturated steam at 100 °C to a final state of 38°C and 50% relative humidity. Sketch the process on the psychrometric chart and calculate the following: (a) Mass flow rate (b) Steam flow rate needed (c) Heating coil capacityarrow_forward
- Moist air enters an air conditioning unit at 40°C dry bulb temperature and 45% relative humidity. The air is first passed over cooling coils to remove all of the moisture necessary to achieve the final moisture content and then is passed over heating coils to achieve the final conditions of 20°C dry bulb temperature and 10°C wet bulb temperature. The pressure remains constant at 1 atm throughout the process. (a) Sketch the psychometric diagram for the process. (b) Determine the dew point temperature of the mixture at the inlet of the cooling coils and at the inlet of the heating coils. (c) Calculate the net heat transfer for the entire process, in kJ/kg dry air.arrow_forwardDetermine the heat required to convert 5.0 m³s1 of an air vapor mixture, having wet and dry bulb temperature of 25°C and 30°C into a mixture having the same humidity at the dry bulb temperature of 70°C. Further determine the volumetric flow rate of the final mixture. water Humidity at 25°C/30°C = 0.018 kg kg1arrow_forwardAir at dry bulb temperature of 26 Celsius and a RH of 85% is heated to a dry bulb temperature at 100 Celsius . The dryer contains 2300 kg of coconut with an initial moisture content of 67% wet basis. If the average moisture content of the product is 15% wet basis, after drying for 7 hour, with the air flow rate of 1739kg/hr., determine the exit air temperature and relative humidity, and heat requirement in kW. (B). A parallel-flow heat exchanger is used to cool milk (C=3.845 J/Kg. 0C) entering at 110 Celsius. The flow rate of milk is 1.5 kg/s. Cold water (C=4.178 KJ/ kg 0C) enters at 22 Celsius with a flow rate of 3.0 kg/s and exits at 45 0C. The overall heat transfer coefficient is known to be 300 W/m2.0 Calculate (a). The exit temperature of milk(c). Draw the temperature profile of above heat exchanger(b). The heat transfer surface area requiredarrow_forward
- The air in a room (24.0°C and 30% humidity) with a volume of 96.6 m3 must be replaced every 5 minutes. Outside air at 38.0°C and 70% humidity is chilled to remove some of its water content and then dehumidified to the required temperature. What is the volumetric flow rate (in m3/min) of the humid air entering the chiller?arrow_forwardA wet cooling tower is to cool 60 kg/s of water from 40 to 26°C. Atmospheric air enters the tower at 1 atm with dry- and wet-bulb temperatures of 22 and 16°C, respectively, and leaves at 34°C with a relative humidity of 90 percent. Using the psychrometric chart, determine: (a) the volume flow rate of air into the cooling tower; and (b) the mass flow rate of the required makeup water. Answers: (a) 44.9 m3/s, (b) 1.16 kg/sarrow_forward250 kg/h of air saturated at 2°C is mixed with 50 kg/h of air at 35°C and 80% relative humidity. Determine the final state of airarrow_forward
- Moist air at 105 kPa, 30° C and 80% relative humidity flows over a cooling coil in an insulated air-conditioning duct. Saturated air exists the duct at 100kPa and 15°C. The saturation pressure of water at 30° C and 15°C are 4.24 kPa and 1.7 kPa, respectively. Molecular weight of water is 18 g/mol and that of air is 28.94 g/mol. The mass of water condensing out from the duct is ... g/kg of dry air (round off to 2 decimal places).arrow_forwardAmbient air enters a cooling coil at 24°C db-temperature and 50% relative humidity with a dry air mass flow rate of 0.9 kg/s. The air leaving the cooling coil at 9°C is reheated to 13°C and 70% relative humidity. The pressure is constant at 101.3 kPa. Determine:the dew-point of the ambient air in °Cthe rate of moisture removal in the cooling coil in kg/sthe refrigeration capacity of the cooling coil in kWthe heat input rate of the heating coil in kWarrow_forwardMoist air flowing at 2 kg/s and a dry bulb temperature of 50 C and wet bulb temperature of 30C mixes with another stream of moist air flowing at 3 kg/s at 25C and relative humidity of 65%. Using a psychrometric chart, determine the (a) humidity ratio, (b) enthalpy, and (c) dry bulb temperature of the two streams mixed together.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY