CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.7, Problem 83P
To determine
Reconsider Prob. 14–82. How far will the temperature of the humid air have to be reduced to produce the desired dehumidification.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the enthalpy, volume and entropy of 2 kg of
steam at a pressure of 1.9 MPa having the dryness fraction
of 0.85.
An equimolar mixture of helium and argon gases is to be used as the working fluid in a closed-loop gas-turbine cycle. The mixture
enters the turbine at 2.5 MPa and 1100 K and expands isentropically to a pressure of 200 kPa. Determine the work output of the
turbine per unit mass of the mixture. Use the table containing the molar mass, gas constant, and critical-point properties and the table
containing the ideal-gas specific heats of various common gases.
2.5 MPa
He - Ar
turbine
200 kPa
W
The work output of the turbine per unit mass of the mixture is
kJ/kg.
Thermodynamics question
Using PV=mRT and PV=NRuT
Chapter 14 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- the total enthalpy of 18 kg of steam at 9000 kpa is 42 409.224 kj . Determine the dryness fraction of the steam ? .arrow_forwardA cylinder contains a mixture of air and wet steam at a pressure of 130kN/m2 and a temperature of 760 C. The dryness fraction of the steam is 0.92. The air – steam mixture is then compressed to one-fifth of its original volume the final temperature being 1250 C. Determine: a) The final pressure in the cylinder b) The final dryness fraction of the steam. Note: I need both right solutions.arrow_forwardA product having a moisture content of 70% (wet basis) is dried in a tunnel-type dryer at a rate of 30 kg/hour. Drying air is supplied at a rate of 1000 kg air/hr at 60 °C and 5% RH, and exits the dryer at 25 °C, and the product is in equilibrium with the product at 40% RH. Determine the moisture content of the product coming out of the dryer, as well as the activity of the product water. a. Product moisture content = Answer % (wet basis). b. Water activity = arrow_forward
- A steam supply at 1.5MP is formed from a mixture of steam at 1.5MPA and dryness fraction 0.9 and steam at 1.5MPA and temperature 210°C in the ratio 1:2 by mass. The mixture is then throttled down to a pressure of 0.28MPa. Determine a-the density of the mixture before throttling b-the temperature of steam after throttling. Take the specific heat of superheated steam as 2kJ/kg K. (7.79kg/m², 15. 141.5°C)arrow_forwardAir is compressed in a compressor from 30 C , 60% relative humidity , and 101kPa to 414kPa and then cooled in an intercooler before entering a second stage of compression. What is the minimum temperature to which the air can be cooled so that condensation does not take place?arrow_forwardWater needed to be cooled from 38°C to 33°C in a cooling tower with water flowrate of 110 kg/s. Ambient air is at 29°C, 90 KPa, and 50% Relative Humidity. Assuming that the air reaches thermodynamics equilibrium with incoming water, evaluate the heat dissipation.arrow_forward
- One m3/s of air at 12°C and 50% RH is heated and humidified using saturated steam at 100 °C to a final state of 38°C and 50% relative humidity. Sketch the process on the psychrometric chart and calculate the following: (a) Mass flow rate (b) Steam flow rate needed (c) Heating coil capacityarrow_forwardUsing the Clapeyron equation, determine the latent heat of vaporization of saturated Propane. Data: Temperature: 40°F; Pressure: 77.80 psia; Liquid volume: 0.03055 ft3/lbm; Vapor volume: 1.33 ft3/lbm.arrow_forward30 m³ of air at 15°C DBT and 0.827 m³/kg specific volume are mixed with 12-m3 of air at 25°C DBT and 0.96 m³/kg specific volume. The dry bulb temperature (DBT) of resulting mixture is "C. (Correct up to 2 decimal places)arrow_forward
- A fruit juices at 30°C with 5% total solids is being concentrated in a single-effect evaporator. The evaporator is being operated at a sufficient vacuum to allow the product moisture to evaporate at 80°C, and steam with 85% quality is being supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The concentrated product exits the evaporator at a rate of 2500 kg/h. The specific heat of liquid feed is 4.05 kJ/(kg°C), and of concentrated product is 3.175 kJ/(kg°C). Calculate the:a. Steam requirements is = Answer kg / hour. b. Steam economy for the process, when condensate is released at 90°C. = Answer (kg of water evaporates / kg of steam)arrow_forwardSpace air at 20°C DBT and 50% RH is mixed with outdoor air at 45 °C DBT and 28 °C WBT in the ratio of 4:1. The mixture is passed through a cooling coil whose temperature is maintained at 8 °C and whose bypass factor is 0.25. Find the following: (a) Condition of air entering the coil. (b) Condition of air leaving the coil. (c) If 200 kg/min of air is supplied to the room, find the cooling load of the coil.arrow_forwardDuring the expansion process of the ideal Ottocycle, the gas is a mixture whose volumetric composition is25 percent nitrogen, 7 percent oxygen, 28 percent water, and40 percent carbon dioxide. Calculate the thermal efficiency ofthis cycle when the air at the beginning of the compression isat 12 psia and 55°F, the compression ratio is 7, and the maxi-mum cycle temperature is 1600°F. Model the heat-additionand heat-rejection processes using constant gas properties thatare the average of the air and expansion gas properties.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY