Speed of a Tsunami Tsunamis can have wavelengths between 100 and 400 km. Since this is much greater than the average depth of the oceans (about 4.3 km), the ocean can be considered as shallow water for these waves. Using the speed of waves in shallow water of depth d given in Problem 8, find the typical speed for a tsunami. ( Note : In the open ocean, tsunamis generally have an amplitude of less than a meter, allowing them to pass ships unnoticed. As they approach shore, however, the water depth decreases and the waves slow down. This can result in an increase of amplitude to as much as 37 m or more.)
Speed of a Tsunami Tsunamis can have wavelengths between 100 and 400 km. Since this is much greater than the average depth of the oceans (about 4.3 km), the ocean can be considered as shallow water for these waves. Using the speed of waves in shallow water of depth d given in Problem 8, find the typical speed for a tsunami. ( Note : In the open ocean, tsunamis generally have an amplitude of less than a meter, allowing them to pass ships unnoticed. As they approach shore, however, the water depth decreases and the waves slow down. This can result in an increase of amplitude to as much as 37 m or more.)
Speed of a Tsunami Tsunamis can have wavelengths between 100 and 400 km. Since this is much greater than the average depth of the oceans (about 4.3 km), the ocean can be considered as shallow water for these waves. Using the speed of waves in shallow water of depth d given in Problem 8, find the typical speed for a tsunami. (Note: In the open ocean, tsunamis generally have an amplitude of less than a meter, allowing them to pass ships unnoticed. As they approach shore, however, the water depth decreases and the waves slow down. This can result in an increase of amplitude to as much as 37 m or more.)
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Starter the rule of significant
Please solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.