Concept explainers
BIO Predict/Calculate OSHA Noise Standards OSHA, the Occupational Safety and Health Administration, has established standards for workplace exposure to noise. According to OSHA’s Hearing Conservation Standard, the permissible noise exposure per day is 95.0 dB for 4 hours or 105 dB for 1 hour. Assuming the eardrum is 9.5 mm in diameter, find the energy absorbed by the eardrum (a) with 95.0 dB for 4 hours and (b) with 105 dB for 1 hour. (c) Is OSHA’s safety standard simply a measure of the amount of energy absorbed by the ear? Explain.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Concepts of Genetics (12th Edition)
Chemistry: The Central Science (14th Edition)
Organic Chemistry (8th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- The area of a typical eardrum is about 5.0 x 10-5 m2. Calculate the sound power (the energy per second) incident on an eardrum at (a) the threshold of hearing and (b) the threshold of pain.arrow_forwardSound is detected when a sound wave causes the eardrum to vibrate (as shown). Typically, the diameter of the eardrum is about 8.4 mm in humans. When someone speaks to you in a normal tone of voice, the sound intensity at your ear is approximately 1.0 × 10-6 W/m2. How much energy is delivered to your eardrum each second?arrow_forwardTAKE T= 9 U = 2arrow_forward
- A sound wave with intensity 2 x 10 -3 W/m2 is perceived to be modestly loud. Your eardrum is 6 mm in diameter. How much energy will be transferred to your eardrum while listening to this sound for 1 minute?arrow_forwarda noise level meter reads the sound level in a room to be 85 dB. What is the intensity of sound in W/m^2?arrow_forwardProblem 5: The softest sound a human ear can hear is at 0 dB (Io = 10-12 W/m2). Sounds above 130 dB cause pain. A particular student's eardrum has an area of A = 56 mm2.Randomized Variables A = 56 mm2 Part (a) What is the most power, in watts, the ear can receive before the listener feels pain?Numeric : A numeric value is expected and not an expression.Pmax = __________________________________________Part (b) What is the smallest power, in watts, the ear can detect?Numeric : A numeric value is expected and not an expression.Pmin = __________________________________________arrow_forward
- Chapter 16, Problem 069 Your answer is partially correct. Try again. ES. lem The bellow of a territorial bull hippopotamus is measured at 116 dB above the threshold of hearing. What is the sound intensity? Hint: The threshold of human hearing is Io = 1.00 x 10-12 W/m2. plem %3D blem Number Units W/m^2 ▼ oblem the tolerance is +/-5% oblem roblem SHOW HINT Problem LINK TO TEXT Problem Problem By accessing this Question Assistance, you will learn while you earn points based on the Point Potential Policy set by your instructor. Problem Question Attempts: 1 of 6 used SUBMIT ANSWER SAVE FOR LATER Problem Earn Maximum Points available only if you 8:02 PM 4/29/2020 19 e here to search 21 ASL pause break prt sc sysrq f11 f12 insert f8 f9 f10 f4 f5 f6 f7 f2 f3 backspace & %24 80 4 96arrow_forwardThe area of a typical eardrum is about 5.0 x 105 m2, (a) Calculate the sound power (the energy per second) incident on an eardrum at the threshold of hearing. (b) Calculate the sound power incident on an eardrum at the threshold of pain.arrow_forwardThe howler monkey is the loudest land animal and can be heard up to a distance of 4.9 km. Assume the acoustic output of a howler to be uniform in all directions. The acoustic power emitted by the howler, in mW, is closest to:arrow_forward
- A particular person's eardrum is circular, with a diameter of 9.00 mm. (a)How much sound energy (in J) is delivered to an eardrum in one second, at the threshold of human hearing? (The threshold of human hearing is taken to be 1.00 ✕ 10−12 W/m2.) J (b)How much sound energy (in J) is delivered to an eardrum in one second, at the pain threshold for human hearing? (The pain threshold occurs at 1.00 W/m2, one trillion times as intense as the lowest audible level.) J (c)Assume that musicians onstage are exposed to sound that is 10 decibels below the human pain threshold. Over the course of a two-hour concert, how much sound energy (in J) does each ear absorb onstage? Jarrow_forwardTwo students hear the same sound and their eardrums receive the same power from the sound wave. The sound intensity at the eardrums of the first student is 0.93 W/m2, while at the eardrums of the second student the sound intensity is 1.16 times greater. If the diameter of the second student’s eardrum is 1.1 cm, how much acoustic power, in microwatts, is striking each of his (and the other student’s) eardrums?arrow_forwardProblem 3: The human ear can detect a minimum intensity of Io = 10-12 W/m2, which has a sound intensity of 0 dB.Randomized Variables β = 45 dB If the student hears a sound at 45 dB, what is the intensity of the sound?Numeric : A numeric value is expected and not an expression.I = __________________________________________ Problem 4: A student exchanges the stock headphones (β1 = 87 dB) for her mp3 player for a new set that is louder (β2 = 95 dB). If the first set produced a power of P1 = 0.5 W how much power does the new set produce, P2 in W?Numeric : A numeric value is expected and not an expression.P2 = __________________________________________arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning