Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 1PCE
A wave travels along a stretched horizontal rope. The vertical distance from crest to trough for this wave is 16 cm and the horizontal distance from crest to trough is 22 cm. What are (a) the wavelength and (b) the amplitude of this wave?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 14.1 - Rank the following systems in order of increasing...Ch. 14.2 - Suppose the tension in a string is doubled, its...Ch. 14.3 - A particular harmonic wave is described by the...Ch. 14.4 - Which is faster: wave 1 in medium 1 with a...Ch. 14.5 - Enhance Your Understanding (Answers given at the...Ch. 14.6 - Observer 1 approaches a stationary 1000-Hz source...Ch. 14.7 - Prob. 7EYUCh. 14.8 - When a string oscillates with the standing wave...Ch. 14.9 - Rank the following systems in order of increasing...Ch. 14 - A long nail has been driven halfway into the side...
Ch. 14 - What type of wave is exhibited by amber waves of...Ch. 14 - In a classic TV commercial, a group of cats feed...Ch. 14 - Describe how the sound of a symphony played by an...Ch. 14 - A radar gun is often used to measure the speed of...Ch. 14 - When you drive a nail into a piece of wood, you...Ch. 14 - Explain the function of the sliding part of a...Ch. 14 - On a guitar, some strings are single wires, others...Ch. 14 - Prob. 9CQCh. 14 - A wave travels along a stretched horizontal rope....Ch. 14 - To determine: The speed of the waves Answer: The...Ch. 14 - The speed of surface waves in water decreases as...Ch. 14 - Prob. 4PCECh. 14 - A stationary boat bobs up and down with a period...Ch. 14 - Predict/Calculate A 4.5-Hz wave with an amplitude...Ch. 14 - Deepwater Waves The speed of a deepwater wave with...Ch. 14 - Prob. 8PCECh. 14 - Consider a wave on a string with constant tension....Ch. 14 - Suppose you would like to double the speed of a...Ch. 14 - Predict/Explain Two strings are made of the same...Ch. 14 - Predict/Explain Two strings are made of the same...Ch. 14 - Prob. 13PCECh. 14 - A brother and sister try to communicate with a...Ch. 14 - Predict/Calculate (a) Suppose the tension is...Ch. 14 - Prob. 16PCECh. 14 - A 4.5-m-long rope of mass 1.8 kg hangs from a...Ch. 14 - Two steel guitar strings have the same length....Ch. 14 - Use dimensional analysis to show how the speed v...Ch. 14 - Prob. 20PCECh. 14 - Write an expression for a transverse harmonic wave...Ch. 14 - The vertical displacement of a wave on a string is...Ch. 14 - As it travels through a crystal, a light wave is...Ch. 14 - Predict/Calculate A wave on a string is described...Ch. 14 - Consider a harmonic wave with the following wave...Ch. 14 - Predict/Calculate Four waves are described by the...Ch. 14 - To determine: The distance of the cliff form the...Ch. 14 - BIO Dolphin Ultrasound Dolphins of the open ocean...Ch. 14 - Prob. 29PCECh. 14 - Prob. 30PCECh. 14 - Predict/Calculate A sound wave in air has a...Ch. 14 - Prob. 32PCECh. 14 - A rock is thrown downward into a well that is 7.62...Ch. 14 - If the distance to a point source of sound is...Ch. 14 - The intensity level of sound in a truck is 88 dB....Ch. 14 - Prob. 36PCECh. 14 - Sound 1 has an intensity of 48.0 W/m2. Sound 2 has...Ch. 14 - Prob. 38PCECh. 14 - Residents of Hawaii are warned of the approach of...Ch. 14 - In a pig-calling contest, a caller produces a...Ch. 14 - Prob. 41PCECh. 14 - BIO The Human Eardrum The radius of a typical...Ch. 14 - Predict/Explain A horn produces sound with...Ch. 14 - You are heading toward an island in your speedboat...Ch. 14 - When the bell in a clock tower rings with a sound...Ch. 14 - A car approaches a train station with a speed of...Ch. 14 - BIO A bat moving with a speed of 3.25 m/s and...Ch. 14 - A motorcycle and a police car are moving toward...Ch. 14 - Hearing the siren of an approaching fire truck,...Ch. 14 - Prob. 50PCECh. 14 - Predict/Calculate Two bicycles approach one...Ch. 14 - A train on one track moves in the same direction...Ch. 14 - Two cars traveling with the same speed move...Ch. 14 - The Bullet Train The Shinkansen, the Japanese...Ch. 14 - Prob. 55PCECh. 14 - Prob. 56PCECh. 14 - A pair of in-phase stereo speakers is placed side...Ch. 14 - Predict/Calculate Two violinists, one directly...Ch. 14 - Two loudspeakers are placed at either end of a...Ch. 14 - Prob. 60PCECh. 14 - Prob. 61PCECh. 14 - Prob. 62PCECh. 14 - An organ pipe that is open at both ends is 3.5 m...Ch. 14 - A string 2.5 m long with a mass of 3.6 g is...Ch. 14 - Prob. 65PCECh. 14 - The fundamental wavelength for standing sound...Ch. 14 - A string is tied down at both ends. Some of the...Ch. 14 - Prob. 68PCECh. 14 - A guitar string 66 cm long vibrates with a...Ch. 14 - Predict/Calculate A guitar string has a mass per...Ch. 14 - Prob. 71PCECh. 14 - The organ pipe in Figure 14-49 is 2.75 m long. (a)...Ch. 14 - The frequency of the standing wave shown in Figure...Ch. 14 - An organ pipe open at both ends has a harmonic...Ch. 14 - When guitar strings A and B are plucked at the...Ch. 14 - Prob. 76PCECh. 14 - You have three tuning forks with frequencies of...Ch. 14 - Tuning a Piano To tune middle C on a piano, a...Ch. 14 - Two musicians are comparing their clarinets. The...Ch. 14 - Predict/Calculate Two strings that are fixed at...Ch. 14 - Identical cellos are being tested. One is...Ch. 14 - A friend in another city tells you that she has...Ch. 14 - Prob. 83GPCh. 14 - The fundamental of an organ pipe that is closed at...Ch. 14 - The Loudest Animal The loudest sound produced by a...Ch. 14 - Hearing a Good Hit Physicist Robert Adair, once...Ch. 14 - Prob. 87GPCh. 14 - Playing Harmonics When a 63-cm-long guitar string...Ch. 14 - BIO Measuring Hearing Loss To determine the amount...Ch. 14 - BIO Hearing a Pin Drop The ability to hear a pin...Ch. 14 - A cannon 105 m away from you shoots a cannonball...Ch. 14 - A machine shop has 120 equally noisy machines that...Ch. 14 - Predict/Calculate A bottle has a standing wave...Ch. 14 - Speed of a Tsunami Tsunamis can have wavelengths...Ch. 14 - Two trains with 124-Hz horns approach one another....Ch. 14 - Predict/Calculate Jim is speeding toward James...Ch. 14 - Two ships in a heavy fog are blowing their horns,...Ch. 14 - BIO Cracking Your Knuckles When you crack a...Ch. 14 - A steel guitar string has a tension F, length L,...Ch. 14 - A Slinky has a mass of 0.28 kg and negligible...Ch. 14 - BIO Predict/Calculate OSHA Noise Standards OSHA,...Ch. 14 - An organ pipe 3.4 m long is open at one end and...Ch. 14 - Two identical strings with the same tension...Ch. 14 - BIO The Love Song of the Midshipman Fish When the...Ch. 14 - Prob. 105GPCh. 14 - Beats and Standing Waves In Problem 59, suppose...Ch. 14 - Prob. 107PPCh. 14 - Prob. 108PPCh. 14 - Prob. 109PPCh. 14 - Prob. 110PPCh. 14 - Prob. 111PPCh. 14 - Referring to Example 14-11 Suppose the train is...Ch. 14 - Prob. 113PPCh. 14 - Prob. 114PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
28. Consider the reaction
Express the rate of the reaction in terms of the change in concentration of e...
Chemistry: Structure and Properties (2nd Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Organisms with the genotypes AABbCcDd and AaBbCcDd are crossed. What are the expected propor-tions of the follo...
Genetic Analysis: An Integrated Approach (3rd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardA sinusoidal wave travels down a taut, horizontal string with a linear mass density of =0.060 kg/m. The magnitude of maximum vertical acceleration of the wave is aymax=0.90 cm/s2 and the amplitude of the wave is 0.40 m. The string is under a tension of FT=600.00 N. The wave moves in the negative x-direction. Write an equation to model the wave.arrow_forward
- A standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t), where x is in centimeters, t is in seconds, and the resulting amplitude is in millimeters. a. What is the length of the string if this standing wave represents the first harmonic vibration of the string? b. What is the speed of the wave on this string?arrow_forwardA taut rope has a mass of 0.180 kg and a length of 3.60 m. What power must be supplied to the rope so as to generate sinusoidal waves having an amplitude of 0.100 m and a wavelength of 0.500 m and traveling with a speed of 30.0 m/s?arrow_forwardA wave is described by y = 0.020 0 sin (kx - t), where k = 2.11 rad/m, = 3.62 rad/s, x and y are in meters, and t is in seconds. Determine (a) (he amplitude, (b) the wavelength, (c) the frequency, and (d) the speed of the wave.arrow_forward
- A sound wave can be characterized as (a) a transverse wave, (b) a longitudinal wave, (c) a transverse wave or a longitudinal wave, depending on the nature of its source, (d) one that carries no energy, or (e) a wave that does not require a medium to be transmitted from one place to the other.arrow_forwardThe amplitude of a wave is doubled, with no other changes made to the wave. As a result of this doubling, which of the following statements is correct? (a) The speed of the wave changes. (b) The frequency of the wave changes. (c) The maximum transverse speed of an element of the medium changes. (d) Statements (a) through (c) are all true. (e) None of statements (a) through (c) is true.arrow_forwardA sinusoidal wave in a rope is described by the wave function y=0.20sin(0.75x+18t) where x and y are in meters and t is in seconds. The rope has a linear mass density of 0.250 kg/m. The tension in the rope is provided by an arrangement like the one illustrated in Figure P16.13. What is the mass of the suspended object?arrow_forward
- By what factor would you have to multiply the tension in a stretched string so as to double the wave speed? Assume the string does not stretch. (a) a factor of 8 (b) a factor of 4 (c) a factor of 2 (d) a factor of 0.5 (e) You could not change the speed by a predictable factor by changing the tension.arrow_forwardA sinusoidal wave travels down a taut, horizontal string with a linear mass density of =0.060 kg/m . The maximum vertical speed of the wave is vymax=0.30 cm/s. The wave is modeled with the wave equation y(x,t)=Asin(6.00m1x24.00s1t) . (a) What is the amplitude of the wave? (b) What is the tension in the string?arrow_forwardRank the waves represented by the following functions from the largest to the smallest according to (i) their amplitudes, (ii) their wavelengths, (iii) their frequencies, (iv) their periods, and (v) their speeds. If the values of a quantity are equal for two waves, show them as having equal rank. For all functions, x and y are in meters and t is in seconds. (a) y = 4 sin (3x 15t) (b) y = 6 cos (3x + 15t 2) (c) y = 8 sin (2x + 15t) (d) y = 8 cos (4x + 20t) (e) y = 7 sin (6x + 24t)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License