Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
10th Edition
ISBN: 9781337399074
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 14, Problem 78GQ

(a)

Interpretation Introduction

Interpretation:

The rate law has to be determined for the given reaction.

Concept introduction:

Rate law: It is an equation that related to the dependence of the reaction rate on the concentration of each substrate (reactants).

For a reaction,

  aA+bB+cCProducts

  Where,

  A and B are reactants

  a and b are stoichiometric coefficients

Rate=-Δ[A]Δt=k[A]x[B]y[C]z

  Where,

  k is the rate constant

Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.

(a)

Expert Solution
Check Mark

Answer to Problem 78GQ

The rate law for the given reaction is Rate=k[H2O2].

Explanation of Solution

Given information,

The reaction is 2H2O2(aq)2H2O(l)+O2(aq)

  [H2O2](mol/L)InitialReactionRate(molO2/L.min)0.05005.30×1050.1001.06×1040.2002.12×104

Calculate the value of x from experiment 1 and 2

  Rate1Rate2=k[H2O2]1xk[H2O2]2x(5.30×105mol/L.min)(1.06×104mol/L.min)=(0.0500mol/L0.100mol/L)x0.50=0.50n=1

Therefore, the rate law of the given reaction is Rate=k[H2O2].

(b)

Interpretation Introduction

Interpretation:

The value of rate has to be determined for the given reaction.

Concept introduction:

Rate law: It is an equation that related to the dependence of the reaction rate on the concentration of each substrate (reactants).

For a reaction,

  aA+bB+cCProducts

  Where,

  A and B are reactants

  a and b are stoichiometric coefficients

  Rate=-Δ[A]Δt=k[A]x[B]y[C]z

  Where,

  k is the rate constant

Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.

(b)

Expert Solution
Check Mark

Answer to Problem 78GQ

The value of rate constant is 1.06×103min1.

Explanation of Solution

Given information,

The reaction is 2H2O2(aq)2H2O(l)+O2(aq)

  [H2O2](mol/L)InitialReactionRate(molO2/L.min)0.05005.30×1050.1001.06×1040.2002.12×104

Therefore, the rate law of the given reaction is Rate=k[H2O2].

Calculate the value of rate constant from experiment 1

  Rate=k[H2O2]Rateconstant, k=Rate[H2O2]=(5.30×105mol/L.min)(0.0500mol/L)4.0×10-4M/s=1.06×103min1

Therefore, the value of rate constant is 1.06×103min1.

(c)

Interpretation Introduction

Interpretation:

The value of rate has to be determined for the given reaction.

Concept introduction:

Rate law: It is an equation that related to the dependence of the reaction rate on the concentration of each substrate (reactants).

For a reaction,

  aA+bB+cCProducts

  Where,

  A and B are reactants

  a and b are stoichiometric coefficients

  Rate=-Δ[A]Δt=k[A]x[B]y[C]z

  Where,

  k is the rate constant

Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.

Rate constant for a particular reaction is always constant. It does not depend on the concentration of the reactant.

(c)

Expert Solution
Check Mark

Answer to Problem 78GQ

The value of rate constant is 1.06×103min1.

Explanation of Solution

Given information,

The reaction is H2O2(aq)H2O(l)+1/2O2(aq)

Rate constant for a particular reaction is always constant. It does not depend on the concentration of the reactant.

Hence the rate constant of the given reaction is same the rate constant of 2H2O2(aq)2H2O(l)+O2(aq) since the reaction is same and only concentration differs.

Therefore, the value of rate constant is 1.06×103min1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Assume that the formation of nitrogen dioxide: 2NO(g) + O2(g) 2NO2(g)   is an elementary reaction. (a) Write the rate law for this reaction. (b) A sample of air at a certain temperature is contaminated with 2.0 ppm of NO by volume. Under these conditions, can the rate law be simplified? If so, write the simplified rate law. (c) Under the conditions described in part (b), the half-life of the reaction has been estimated to be 6.4 × 103 min. What would the half-life be if the initial concentration of NO were 10 ppm?
Consider the following reaction: 1. 2 N,O5 (g) → 4 NO, (g) + O, (g) The initial concentration of N2O5 was 0.48 mol/L, and 25 minutes after initiating the reaction, all of the N,Os has been consumed. (a) Calculate the average rate of the reaction over this 25-minute time interval. (b) Is it correct to assume that the rate law is Rate = k[N,O5]² based on the balanced chemical equation? Briefly explain your answer.
Consider the following reaction: 2 NO(g) + 2 H2(g)  N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first-order in H2(g). What is the rate law for this reaction? (b) If the rate constant for this reaction at a certain temperature is 9.70e+04, what is the reaction rate when [NO(g)] = 0.0560 M and [H2(g)] = 0.119 M?Rate =  M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.112 M while the concentration of H2(g) is 0.119 M?Rate =  M/s

Chapter 14 Solutions

Chemistry & Chemical Reactivity

Ch. 14.5 - The colorless gas N2O4, decomposes to the brown...Ch. 14.7 - Nitrogen monoxide is reduced by hydrogen to give...Ch. 14.7 - Prob. 14.13CYUCh. 14.7 - One possible mechanism for the decomposition of...Ch. 14.7 - Prob. 1.1ACPCh. 14.7 - Prob. 1.2ACPCh. 14.7 - Prob. 2.1ACPCh. 14.7 - Prob. 2.2ACPCh. 14.7 - Prob. 2.3ACPCh. 14.7 - Determine the activation energy for the reaction...Ch. 14 - Give the relative rates of disappearance of...Ch. 14 - Give the relative rates of disappearance of...Ch. 14 - In the reaction 2 O3(g) 3 O2(g), the rate of...Ch. 14 - In the synthesis of ammonia, if [H2]/t = 4.5 104...Ch. 14 - Experimental data are listed here for the reaction...Ch. 14 - Phenyl acetate, an ester, reacts with water...Ch. 14 - Using the rate equation Rate = k[A]2[B], define...Ch. 14 - A reaction has the experimental rate equation Rate...Ch. 14 - The reaction between ozone and nitrogen dioxide at...Ch. 14 - Nitrosyl bromide, NOBr, is formed from NO and Br2:...Ch. 14 - The data in the table are for the reaction of NO...Ch. 14 - The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g)...Ch. 14 - Data for the reaction NO(g) + O2(g) NO2(g) are...Ch. 14 - Data for the following reaction are given in the...Ch. 14 - The rate equation for the hydrolysis of sucrose to...Ch. 14 - The decomposition of N2O5 in CCl4 is a first-order...Ch. 14 - The decomposition of SO2Cl2 is a first-order...Ch. 14 - The conversion of cyclopropane to propene (Example...Ch. 14 - Hydrogen peroxide, H2O2(aq), decomposes to H2O()...Ch. 14 - The decomposition of nitrogen dioxide at a high...Ch. 14 - At 573 K, gaseous NO2(g) decomposes, forming NO(g)...Ch. 14 - The dimerization of butadiene, C4H6, to form...Ch. 14 - The decomposition of ammonia on a metal surface to...Ch. 14 - Hydrogen iodide decomposes when heated, forming...Ch. 14 - The rate equation for the decomposition of N2O5...Ch. 14 - Gaseous azomethane, CH3N=NCH3, decomposes in a...Ch. 14 - The decomposition of SO2Cl2 SO2Cl2(g) SO2(g) +...Ch. 14 - The compound Xe(CF3)2 decomposes in a first-order...Ch. 14 - The radioactive isotope 64Cu is used in the form...Ch. 14 - Radioactive gold-198 is used in the diagnosis of...Ch. 14 - Prob. 31PSCh. 14 - Ammonia decomposes when heated according to the...Ch. 14 - Gaseous NO2 decomposes at 573 K. NO2(g) NO(g) + ...Ch. 14 - The decomposition of HOF occurs at 25 C. HOF(g) ...Ch. 14 - Prob. 35PSCh. 14 - Prob. 36PSCh. 14 - Calculate the activation energy, Ea, for the...Ch. 14 - If the rate constant for a reaction triples when...Ch. 14 - When healed lo a high temperature, cyclobutane,...Ch. 14 - When heated, cyclopropane is converted to propene...Ch. 14 - The reaction of H2 molecules with F atoms H2(g) +...Ch. 14 - Prob. 42PSCh. 14 - Compare the lock-and-key and induced-fit models...Ch. 14 - Prob. 44PSCh. 14 - Prob. 45PSCh. 14 - The enzyme carbonic anhydrase catalyzes the...Ch. 14 - What is the rate law for each of the following...Ch. 14 - What is the rate law for each of the following...Ch. 14 - Ozone, O3, in the Earths upper atmosphere...Ch. 14 - The reaction of NO2(g) and CO(g) is thought to...Ch. 14 - A proposed mechanism for the reaction of NO2 and...Ch. 14 - The mechanism for the reaction of CH3OH and HBr is...Ch. 14 - A reaction has the following experimental rate...Ch. 14 - For a first-order reaction, what fraction of...Ch. 14 - Prob. 55GQCh. 14 - Data for the following reaction are given in the...Ch. 14 - Formic acid decomposes at 550 C according to the...Ch. 14 - Isomerization of CH3NC occurs slowly when CH3NC is...Ch. 14 - When heated, tetrafluoroethylene dimerizes to form...Ch. 14 - Data in the table were collected at 540 K for the...Ch. 14 - Ammonium cyanate, NH4NCO, rearranges in water to...Ch. 14 - Prob. 62GQCh. 14 - At temperatures below 500 K, the reaction between...Ch. 14 - Nitryl fluoride can be made by treating nitrogen...Ch. 14 - The decomposition of dinitrogen pentaoxide N2O5(g)...Ch. 14 - The data in the table give the temperature...Ch. 14 - The decomposition of gaseous dimethyl ether at...Ch. 14 - The decomposition of phosphine, PH3, proceeds...Ch. 14 - The thermal decomposition of diacetylene, C4H2,...Ch. 14 - Prob. 70GQCh. 14 - The ozone in the Earths ozone layer decomposes...Ch. 14 - Hundreds of different reactions occur in the...Ch. 14 - Data for the reaction [Mn(CO)5(CH3CN)]+ + NC5H5 ...Ch. 14 - The gas-phase reaction 2 N2O5(g) 4 NO2(g) + O2(g)...Ch. 14 - Prob. 75GQCh. 14 - The decomposition of SO2Cl2 to SO2 and Cl2 is...Ch. 14 - The decomposition of nitrogen dioxide at a high...Ch. 14 - Prob. 78GQCh. 14 - Egg protein albumin is precipitated when an egg is...Ch. 14 - A The compound 1,3-butadiene (C4H6) forms...Ch. 14 - Hypofluorous acid, HOF, is very unstable,...Ch. 14 - We know that the decomposition of SO2Cl2 is...Ch. 14 - Nitramide, NO2NH2, decomposes slowly in aqueous...Ch. 14 - Prob. 84GQCh. 14 - The color change accompanying the reaction of...Ch. 14 - Prob. 87ILCh. 14 - Prob. 88ILCh. 14 - The oxidation of iodide ion by the hypochlorite...Ch. 14 - The acid-catalyzed iodination of acetone...Ch. 14 - Prob. 91SCQCh. 14 - The following statements relate to the reaction...Ch. 14 - Chlorine atoms contribute to the destruction of...Ch. 14 - Prob. 95SCQCh. 14 - Prob. 96SCQCh. 14 - The reaction cyclopropane propene occurs on a...Ch. 14 - Prob. 98SCQCh. 14 - Examine the reaction coordinate diagram given...Ch. 14 - Draw a reaction coordinate diagram for an...Ch. 14 - Consider the reaction of ozone and nitrogen...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY