Using the given data the maximum rate for the given reaction has to be calculated. Concept introduction: In order to establish the plausibility of a mechanism, one must compare the rate law of the rate determining step to the experimentally determined rate law. Rate determining step: In a chemical reaction the rate determining step is the slowest step in which the rate of the reaction depends on the rate of that slowest step. Activation energy: It is defined as the minimum energy required by the reacting species in order to undergo chemical reaction. Reactant: In a chemical reaction the species that present left is denoted as reactant which undergoes chemical change and result to given new species called product. Product: In a chemical reaction the species that present in right side is denoted as product that results from the reactant. Reaction coordinate: It is the diagrammatic representation of a chemical reaction which depicts how the reactants get transformed into product where the transition state and the intermediates present in the reaction are also depicted. Enthalpy change: The change in the energy as the product formed from the reactants is represented by the enthalpy change in the reaction coordinate diagram. Intermediate species: It is the species formed during the middle of the chemical reaction between the reactant and the desired product. Maximum reaction rate: It is obtained by plotting inverse of concentration of the reactant with the inverse of respective rate, the point where inverse of concentration becomes 0 is the point of inverse of maximum rate which is then reversed in order to obtain the maximum rate.
Using the given data the maximum rate for the given reaction has to be calculated. Concept introduction: In order to establish the plausibility of a mechanism, one must compare the rate law of the rate determining step to the experimentally determined rate law. Rate determining step: In a chemical reaction the rate determining step is the slowest step in which the rate of the reaction depends on the rate of that slowest step. Activation energy: It is defined as the minimum energy required by the reacting species in order to undergo chemical reaction. Reactant: In a chemical reaction the species that present left is denoted as reactant which undergoes chemical change and result to given new species called product. Product: In a chemical reaction the species that present in right side is denoted as product that results from the reactant. Reaction coordinate: It is the diagrammatic representation of a chemical reaction which depicts how the reactants get transformed into product where the transition state and the intermediates present in the reaction are also depicted. Enthalpy change: The change in the energy as the product formed from the reactants is represented by the enthalpy change in the reaction coordinate diagram. Intermediate species: It is the species formed during the middle of the chemical reaction between the reactant and the desired product. Maximum reaction rate: It is obtained by plotting inverse of concentration of the reactant with the inverse of respective rate, the point where inverse of concentration becomes 0 is the point of inverse of maximum rate which is then reversed in order to obtain the maximum rate.
Solution Summary: The author explains that the rate determining step is the slowest step in a chemical reaction, and the enthalpy change is represented by the reaction coordinate diagram.
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
Chapter 14, Problem 45PS
Interpretation Introduction
Interpretation:
Using the given data the maximum rate for the given reaction has to be calculated.
Concept introduction:
In order to establish the plausibility of a mechanism, one must compare the rate law of the rate determining step to the experimentally determined rate law.
Rate determining step: In a chemical reaction the rate determining step is the slowest step in which the rate of the reaction depends on the rate of that slowest step.
Activation energy: It is defined as the minimum energy required by the reacting species in order to undergo chemical reaction.
Reactant: In a chemical reaction the species that present left is denoted as reactant which undergoes chemical change and result to given new species called product.
Product: In a chemical reaction the species that present in right side is denoted as product that results from the reactant.
Reaction coordinate: It is the diagrammatic representation of a chemical reaction which depicts how the reactants get transformed into product where the transition state and the intermediates present in the reaction are also depicted.
Enthalpy change: The change in the energy as the product formed from the reactants is represented by the enthalpy change in the reaction coordinate diagram.
Intermediate species: It is the species formed during the middle of the chemical reaction between the reactant and the desired product.
Maximum reaction rate: It is obtained by plotting inverse of concentration of the reactant with the inverse of respective rate, the point where inverse of concentration becomes 0 is the point of inverse of maximum rate which is then reversed in order to obtain the maximum rate.
28. For each of the following species, add charges wherever required to give
a complete, correct Lewis structure. All bonds and nonbonded valence
electrons are shown.
a.
b.
H
H
H
H
H
:0-C-H
H
H
H-C-H
C.
H
H
d. H-N-0:
e.
H
H-O
H-O
H
B=0
f. H—Ö—Ñ—Ö—H
Norton Private B
At 0oC and 1 atm, the viscosity of hydrogen (gas) is 8.55x10-5 P. Calculate the viscosity of a gas, if possible, consisting of deuterium. Assume that the molecular sizes are equal.
Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the molecules