Interpretation:
Using the given data the maximum rate for the given reaction has to be calculated.
Concept introduction:
In order to establish the plausibility of a mechanism, one must compare the rate law of the rate determining step to the experimentally determined rate law.
Rate determining step: In a
Activation energy: It is defined as the minimum energy required by the reacting species in order to undergo chemical reaction.
Reactant: In a chemical reaction the species that present left is denoted as reactant which undergoes chemical change and result to given new species called product.
Product: In a chemical reaction the species that present in right side is denoted as product that results from the reactant.
Reaction coordinate: It is the diagrammatic representation of a chemical reaction which depicts how the reactants get transformed into product where the transition state and the intermediates present in the reaction are also depicted.
Enthalpy change: The change in the energy as the product formed from the reactants is represented by the enthalpy change in the reaction coordinate diagram.
Intermediate species: It is the species formed during the middle of the chemical reaction between the reactant and the desired product.
Maximum
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry & Chemical Reactivity
- When enzymes are present at very low concentration, their effect on reaction rate can be described by first-order kinetics. Calculate by what factor the rate of an enzyme-catalyzed reaction changes when the enzyme concentration is changed from 1.5 107 M to 4.5 106 M.arrow_forwardCompare the lock-and-key and induced-fit models for substrate binding to an enzyme.arrow_forwardCompare the functions of homogeneous and heterogeneous catalysts.arrow_forward
- The hydrolysis of the sugar sucrose to the sugars glucose and fructose follows a first-order rate equation for the disappearance of sucrose. C12H22O11(aq)+H2O(l)C6H12O6(aq)+C6H12O6(aq) Rate =k[C12H22O11] In neutral solution, k=2.11011 at 27 C. (As indicated by the rate constant, this is a very slow reaction. In the human body, the rate of this reaction is sped up by a type of catalyst called an enzyme.) (Note: That is not a mistake in the equation—the products of the reaction, glucose and fructose, have the same molecular formulas, C6H12O6, but differ in the arrangement of the atoms in their molecules). The equilibrium constant for the reaction is 1.36105 at 27 C. What are the concentrations of glucose, fructose, and sucrose after a 0.150 M aqueous solution of sucrose has reached equilibrium? Remember that the activity of a solvent (the effective concentration) is 1.arrow_forwardWhich of the reactions in Question 62 would (a) occur fastest? (b) occur slowest? (Assume equal temperatures, equal concentrations, equal frequency factors, and the same rate law for all reactions.)arrow_forwardList two ways that enzyme catalysis of a reaction is superior to normal conditions.arrow_forward
- Alcohol is removed from the bloodstream by a series of metabolic reactions. The first reaction produces acetaldehyde; then other products are formed. The following data have been determined for the rate at which alcohol is removed from the blood of an average male, although individual rates can vary by 2530%. Women metabolize alcohol a little more slowly than men: [C2H5OH](M) 4.4102 3.3102 2.2102 Rate(moI/L/h) 2.0102 2.0102 2.0102 Determine the rate equation, the rate constant, and the overall order for this reaction.arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forwardSucrose decomposes to fructose and glucose in acid solution. A plot of the concentration of sucrose as a function of time is given in the margin. What is the rate of change of the sucrose concentration over the first 2 hours? What is the rate of change over the last 2 hours? Concentration versus time for the decomposition of sucrose.arrow_forward
- When formic acid is heated, it decomposes to hydrogen and carbon dioxide in a first-order decay: HCOOH(g)CO2(g)+H2(g) The rate of reaction is monitored by measuring the total pressure in the reaction container. Time (s) Pressure (torr) 0 220 50 324 100 379 150 408 200 423 250 431 300 435 Calculate the rate constant and half-life in seconds for the reaction. At the start of the reaction (time = 0), only formic acid is present. (HINT: Find the partial pressure of formic acid using Dalton's law of partial pressure and the reaction stoichiometry to find PHCOOH at each time.)arrow_forwardSuppose that the half-life of steroids taken by an athlete is 42 days. Assuming that the steroids biodegrade by a first-order process 5, how long would it take for 164 of the initial dose to remain in the athlete’s body?arrow_forwardExperiments have shown that the average frequency of chirping by a snowy tree cricket (Oecanthus fultoni) depends on temperature as shown in the table. Chirping Rate (per min) Temperature (C) 178 25.0 126 20.3 100. 17.3 What is the apparent activation energy of the process that controls the chirping? What is the rate of chirping expected at a temperature of 7.5C?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning