
Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 41RQ
To determine
The factors restricting the use of dry-sand molding.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A heat pump is operating between a low temperature reservoir of 270 K and a high temperaturereservoir of 340 K. The heat pump receives heat at 255 K from the low temperature reservoir andrejects heat at 355 K to the high temperature reservoir. The heating coefficient of performance ofthe heat pump is 3.2. The heat transfer rate from the low temperature reservoir is 30 kW. The deadstate temperature is 270 K. Determine,a. Power input to the heat pump (kW)b. Heat transfer rate to the high-temperature reservoir (kW)c. Exergy destruction rate associated with the low temperature heat transfer (kW)d. Exergy destruction rate of the heat pump (kW)e. Exergy destruction rate associated with the high temperature heat transfer (kW)f. Exergetic efficiency of the heat pump itself
Refrigerant 134a (Table B6, p514 of textbook) enters a tube in the evaporator of a refrigerationsystem at 132.73 kPa and a quality of 0.15 at a velocity of 0.5 m/s. The R134a exits the tube as asaturated vapor at −21°C. The tube has an inside diameter of 3.88 cm. Determine the following,a. The pressure drop of the R134a as it flows through the tube (kPa)b. The volumetric flow rate at the inlet of the tube (L/s)c. The mass flow rate of the refrigerant through the tube (g/s)d. The volumetric flow rate at the exit of the tube (L/s)e. The velocity of the refrigerant at the exit of the tube (m/s)f. The heat transfer rate to the refrigerant (kW) as it flows through the tube
Water enters the rigid, covered tank shown in Figure P3.2 with a volumetric flow rate of 0.32L/s. The water line has an inside diameter of 6.3 cm. The air vent on the tank has an inside diameterof 4.5 cm. The water is at a temperature of 30°C and the air in the tank is at atmospheric pressure(1 atm) and 30°C. Determine the air velocity leaving the vent at the instant shown in the figure
Chapter 14 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 14 - What are some of the factors that influence the...Ch. 14 - What are the three basic categories of casting...Ch. 14 - What metals are frequently cast into products?Ch. 14 - What features combine to make cast iron and...Ch. 14 - Which type of casting is the most common and most...Ch. 14 - Prob. 6RQCh. 14 - Prob. 7RQCh. 14 - What is the simplest and least expensive type of...Ch. 14 - What is a match plate, and how does it aid...Ch. 14 - How is a cope-and-drag pattern different from a...
Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - For what types of products might a loose-piece...Ch. 14 - What are the four primary requirements of molding...Ch. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - What is a muller, and what function does it...Ch. 14 - Prob. 18RQCh. 14 - What is a standard rammed specimen for evaluating...Ch. 14 - What is permeability, and why is it important in...Ch. 14 - How does the ratio of water to clay affect the...Ch. 14 - How is the hardness of molding sand determined?Ch. 14 - Prob. 23RQCh. 14 - How does the size and shape of the sand grains...Ch. 14 - Prob. 25RQCh. 14 - Prob. 26RQCh. 14 - Prob. 27RQCh. 14 - Prob. 28RQCh. 14 - Prob. 29RQCh. 14 - Prob. 30RQCh. 14 - What are hot tears, and what can cause them to...Ch. 14 - When might hand ramming be the preferred method of...Ch. 14 - Prob. 33RQCh. 14 - Prob. 34RQCh. 14 - Prob. 35RQCh. 14 - Prob. 36RQCh. 14 - What is stack molding?Ch. 14 - Prob. 38RQCh. 14 - What are the components of green sand?Ch. 14 - Prob. 40RQCh. 14 - Prob. 41RQCh. 14 - Prob. 42RQCh. 14 - What are some of the advantages and limitations of...Ch. 14 - Prob. 44RQCh. 14 - Prob. 45RQCh. 14 - Prob. 46RQCh. 14 - Prob. 47RQCh. 14 - Prob. 48RQCh. 14 - Prob. 49RQCh. 14 - Why do shell molds have excellent permeability and...Ch. 14 - Prob. 51RQCh. 14 - Prob. 52RQCh. 14 - Prob. 53RQCh. 14 - Prob. 54RQCh. 14 - Prob. 55RQCh. 14 - What is the sand binder in the core-oil process,...Ch. 14 - What is the binder in the hot-box core-making...Ch. 14 - What is the primary attraction of the cold-box...Ch. 14 - What is shelf life? How is it different from bench...Ch. 14 - Prob. 60RQCh. 14 - Prob. 61RQCh. 14 - Prob. 62RQCh. 14 - Prob. 63RQCh. 14 - Prob. 64RQCh. 14 - Prob. 65RQCh. 14 - Why are plaster molds only suitable for the...Ch. 14 - How does the Antioch process provide permeability...Ch. 14 - What is the primary performance difference between...Ch. 14 - Prob. 69RQCh. 14 - Prob. 70RQCh. 14 - Prob. 71RQCh. 14 - Describe the progressive construction of an...Ch. 14 - Why are investment casting molds generally...Ch. 14 - Prob. 74RQCh. 14 - What are some of the attractive features of...Ch. 14 - What recent development has made one-of-a-kind or...Ch. 14 - Prob. 77RQCh. 14 - Prob. 78RQCh. 14 - What are some of the benefits of not having to...Ch. 14 - What are some of the ways by which expanded...Ch. 14 - Prob. 81RQCh. 14 - Prob. 82RQCh. 14 - Prob. 83RQCh. 14 - Prob. 84RQCh. 14 - Prob. 85RQCh. 14 - Prob. 86RQCh. 14 - What are the most common single-use mold...Ch. 14 - What are the most common methods of core...Ch. 14 - Although cores increase the cost of castings, they...Ch. 14 - Several of the additive manufacturing processes...Ch. 14 - Additive manufacturing processes can also build...Ch. 14 - Cast iron cookware can offer a number of...Ch. 14 - Figure CS-14 shows the hitch ball component of a...Ch. 14 - Prob. 2.1CSCh. 14 - Prob. 2.2CSCh. 14 - Prob. 2.3CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Using method of sections, determine the force in member BC, HC, and HG. State if these members are in tension or compression. 2 kN A 5 kN 4 kN 4 kN 3 kN H B C D E 3 m F 2 m -5 m 5 m- G 5 m 5 m-arrow_forwardDetermine the normal stresses σn and σt and the shear stress τnt at this point if they act on the rotated stress element shownarrow_forwardUsing method of joints, determine the force in each member of the truss and state if the members are in tension or compression. A E 6 m D 600 N 4 m B 4 m 900 Narrow_forward
- Question 5. The diagram below shows a mass suspended from a tie supported by two horizontal braces of equal length. The tie forms an angle "a" of 60° to the horizontal plane, the braces form an angle 0 of 50° to the vertical plane. If the mass suspended is 10 tonnes, and the braces are 10m long, find: a) the force in the tie; & b) the force in the braces Horizontal Braces, Tie Massarrow_forward= MMB 241 Tutorial 2.pdf 1 / 3 75% + + Tutorial z Topic: Kinematics of Particles:-. QUESTIONS 1. Use the chain-rule and find y and ŷ in terms of x, x and x if a) y=4x² b) y=3e c) y = 6 sin x 2. The particle travels from A to B. Identify the three unknowns, and write the three equations needed to solve for them. 8 m 10 m/s 30° B x 3. The particle travels from A to B. Identify the three unknowns, and write the three equations needed to solve for them. A 40 m/s 20 m B 1arrow_forward3 m³/s- 1 md 45° V 1.8 mr 2mrarrow_forward
- = MMB 241 Tutorial 2.pdf 3/3 75% + + 6. A particle is traveling along the parabolic path y = 0.25 x². If x = 8 m, vx=8 m/s, and ax= 4 m/s² when t = 2 s, determine the magnitude of the particle's velocity and acceleration at this instant. y = 0.25x² -x 7. Determine the speed at which the basketball at A must be thrown at the angle of 30° so that it makes it to the basket at B. 30° -x 1.5 m B 3 m -10 m- 8. The basketball passed through the hoop even though it barely cleared the hands of the player B who attempted to block it. Neglecting the size of the ball, determine the 2arrow_forwardAdhesives distribute loads across the interface, whereas fasteners create areas of localized stresses. True or Falsearrow_forwardA continuous column flash system is separating 100 kmol/h of a saturated liquid feed that is 45 mol% methanol and 55 mol% water at 1.0 atm. Operate with L/V = 1.5 and the outlet bottoms at xN = 0.28. Find the values of FL, FV, y1, and the number of equilibrium stages required. Find the value of Q used to vaporize FV. For a normal flash with the same feed and the same V/F, find the values of x and y.arrow_forward
- A beer still is being used to separate ethanol from water at 1.0 atm. The saturated liquid feed flow rate is F = 840.0 kmol/h. The feed is 44.0 mol% ethanol. The saturated vapor steam is pure water with ratio of steam flow rate S to feed rate, S/F = 2/3. We desire a bottoms product that is 4.0 mol% ethanol. CMO is valid. Find the mole fraction of ethanol in the distillate vapor, yD,E. Find the number of equilibrium stages required. If the feed is unchanged and the S/F ratio is unchanged, but the number of stages is increased to a very large number, what is the lowest bottoms mole fraction of ethanol that can be obtained?arrow_forward3.1 Convert the following base-2 numbers to base-10: (a) 1011001, (b) 110.0101, and (c) 0.01011.arrow_forwardConsider the forces acting on the handle of the wrench in (Figure 1). a) Determine the moment of force F1={−F1={−2i+i+ 4 jj −−8k}lbk}lb about the zz axis. Express your answer in pound-inches to three significant figures. b) Determine the moment of force F2={F2={3i+i+ 7 jj −−6k}lbk}lb about the zz axis. Express your answer in pound-inches to three significant figures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Casting Metal: the Basics; Author: Casting the Future;https://www.youtube.com/watch?v=2CIcvB72dmk;License: Standard youtube license