Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 23RQ
To determine
Compactibility correlates with moisture content.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1. A curved beam of a circular cross section of diameter "d" is fixed at one end and
subjected to a concentrated load P at the free end (Fig. 1). Calculate stresses at points
A and C. Given: P = 800 N, d = 30 mm, a 25 mm, and b = 15 mm.
Fig.1
P
b
B
(10 Marks)
You are working as an engineer in a bearing systems design company. The flow of
lubricant inside a hydrodynamic bearing (p = 0.001 kg m-1 s-1) can be approximated
as a parallel, steady, two-dimensional, incompressible flow between two parallel plates.
The top plate, representing the moving part of the bearing, travels at a constant speed,
U, while the bottom plate remains stationary (Figure Q1). The plates are separated by
a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By
applying the above approximations to the Navier-Stokes equations and assuming that
end effects can be neglected, the horizontal velocity profile can be shown to be
y = +h
I
2h = 1 cm
x1
y = -h
u(y)
1 dP
2μ dx
-y² + Ay + B
moving plate
stationary plate
U
2
I2
L = 10 cm
Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm,
into the page.
Question 1
You are working as an engineer in a bearing systems design company. The flow of
lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated
as a parallel, steady, two-dimensional, incompressible flow between two parallel plates.
The top plate, representing the moving part of the bearing, travels at a constant speed,
U, while the bottom plate remains stationary (Figure Q1). The plates are separated by
a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By
applying the above approximations to the Navier-Stokes equations and assuming that
end effects can be neglected, the horizontal velocity profile can be shown to be
1 dP
u(y)
=
2μ dx
-y² + Ay + B
y= +h
Ꮖ
2h=1 cm
1
x1
y = −h
moving plate
stationary plate
2
X2
L = 10 cm
Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm,
into the page.
(a) By considering the appropriate boundary conditions, show that the constants take
the following forms:
U
U
1 dP
A =…
Chapter 14 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 14 - What are some of the factors that influence the...Ch. 14 - What are the three basic categories of casting...Ch. 14 - What metals are frequently cast into products?Ch. 14 - What features combine to make cast iron and...Ch. 14 - Which type of casting is the most common and most...Ch. 14 - Prob. 6RQCh. 14 - Prob. 7RQCh. 14 - What is the simplest and least expensive type of...Ch. 14 - What is a match plate, and how does it aid...Ch. 14 - How is a cope-and-drag pattern different from a...
Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - For what types of products might a loose-piece...Ch. 14 - What are the four primary requirements of molding...Ch. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - What is a muller, and what function does it...Ch. 14 - Prob. 18RQCh. 14 - What is a standard rammed specimen for evaluating...Ch. 14 - What is permeability, and why is it important in...Ch. 14 - How does the ratio of water to clay affect the...Ch. 14 - How is the hardness of molding sand determined?Ch. 14 - Prob. 23RQCh. 14 - How does the size and shape of the sand grains...Ch. 14 - Prob. 25RQCh. 14 - Prob. 26RQCh. 14 - Prob. 27RQCh. 14 - Prob. 28RQCh. 14 - Prob. 29RQCh. 14 - Prob. 30RQCh. 14 - What are hot tears, and what can cause them to...Ch. 14 - When might hand ramming be the preferred method of...Ch. 14 - Prob. 33RQCh. 14 - Prob. 34RQCh. 14 - Prob. 35RQCh. 14 - Prob. 36RQCh. 14 - What is stack molding?Ch. 14 - Prob. 38RQCh. 14 - What are the components of green sand?Ch. 14 - Prob. 40RQCh. 14 - Prob. 41RQCh. 14 - Prob. 42RQCh. 14 - What are some of the advantages and limitations of...Ch. 14 - Prob. 44RQCh. 14 - Prob. 45RQCh. 14 - Prob. 46RQCh. 14 - Prob. 47RQCh. 14 - Prob. 48RQCh. 14 - Prob. 49RQCh. 14 - Why do shell molds have excellent permeability and...Ch. 14 - Prob. 51RQCh. 14 - Prob. 52RQCh. 14 - Prob. 53RQCh. 14 - Prob. 54RQCh. 14 - Prob. 55RQCh. 14 - What is the sand binder in the core-oil process,...Ch. 14 - What is the binder in the hot-box core-making...Ch. 14 - What is the primary attraction of the cold-box...Ch. 14 - What is shelf life? How is it different from bench...Ch. 14 - Prob. 60RQCh. 14 - Prob. 61RQCh. 14 - Prob. 62RQCh. 14 - Prob. 63RQCh. 14 - Prob. 64RQCh. 14 - Prob. 65RQCh. 14 - Why are plaster molds only suitable for the...Ch. 14 - How does the Antioch process provide permeability...Ch. 14 - What is the primary performance difference between...Ch. 14 - Prob. 69RQCh. 14 - Prob. 70RQCh. 14 - Prob. 71RQCh. 14 - Describe the progressive construction of an...Ch. 14 - Why are investment casting molds generally...Ch. 14 - Prob. 74RQCh. 14 - What are some of the attractive features of...Ch. 14 - What recent development has made one-of-a-kind or...Ch. 14 - Prob. 77RQCh. 14 - Prob. 78RQCh. 14 - What are some of the benefits of not having to...Ch. 14 - What are some of the ways by which expanded...Ch. 14 - Prob. 81RQCh. 14 - Prob. 82RQCh. 14 - Prob. 83RQCh. 14 - Prob. 84RQCh. 14 - Prob. 85RQCh. 14 - Prob. 86RQCh. 14 - What are the most common single-use mold...Ch. 14 - What are the most common methods of core...Ch. 14 - Although cores increase the cost of castings, they...Ch. 14 - Several of the additive manufacturing processes...Ch. 14 - Additive manufacturing processes can also build...Ch. 14 - Cast iron cookware can offer a number of...Ch. 14 - Figure CS-14 shows the hitch ball component of a...Ch. 14 - Prob. 2.1CSCh. 14 - Prob. 2.2CSCh. 14 - Prob. 2.3CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) ← intake normal shock 472 m/s A B (b) 50 m/s H 472 m/s B engine altitude: 14,000 m exhaust nozzle E F exit to atmosphere diameter: DE = 0.30 m E F diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed…arrow_forwardيكا - put 96** I need a detailed drawing with explanation or in wake, and the top edge of im below the free surface of the water. Determine the hydrothed if hydrostatic on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. =--20125 7357 750 X 2.01arrow_forwardYou are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be U y = +h У 2h = 1 cm 1 x1 y=-h u(y) = 1 dP 2μ dx -y² + Ay + B moving plate - U stationary plate 2 I2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: A = U 2h U 1 dP…arrow_forward
- Question 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) normal shock 472 m/s A B (b) intake engine altitude: 14,000 m D exhaust nozzle→ exit to atmosphere 472 m/s 50 m/s B diameter: DE = 0.30 m EX diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. F a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed of…arrow_forwardgiven below: A rectangular wing with wing twist yields the spanwise circulation distribution kbV1 roy) = kbv. (2) where k is a constant, b is the span length and V. is the free-stream velocity. The wing has an aspect ratio of 4. For all wing sections, the lift curve slope (ag) is 2 and the zero-lift angle of attack (a=0) is 0. a. Derive expressions for the downwash (w) and induced angle of attack a distributions along the span. b. Derive an expression for the induced drag coefficient. c. Calculate the span efficiency factor. d. Calculate the value of k if the wing has a washout and the difference between the geometric angles of attack of the root (y = 0) and the tip (y = tb/2) is: a(y = 0) a(y = ±b/2) = /18 Hint: Use the coordinate transformation y = cos (0)arrow_forward۳/۱ العنوان O не شكا +91x PU + 96852 A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of Deine the hadrostatic force on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. = -20125 750 x2.01arrow_forward
- Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forwardQ1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 marrow_forwardI need handwritten solution with sketches for eacharrow_forward
- Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Materials Science Mechanical Engineering - Part 3 Corrosion Explained; Author: Mega Mechatronics;https://www.youtube.com/watch?v=Il-abRhrzFY;License: Standard Youtube License