
Concept explainers
Using the data for the coffee table in Problem 14.31, build a labor

To determine: The number of labor hours and employees needed each day.
Explanation of Solution
Given information:
- Table requires 1 top, 4 legs, 1/8 gallon of strain, 1/16 gallon of blue, 2 short braces, 2 long braces, and brass cap on the bottom of each leg.
- 100 gallons of glue as inventory.
- All items except brass caps, stain and glue are planned on a Lot for lot basis.
- Caps are purchased in 1000’s, stain and glue by gallon.
- Lead time = 1 (for each item).
- 640 coffee tables needed on day 5 and 6.
- 128 coffee tables needed on days 7 and 8.
- Labor standard for each top is 2 labor hours.
- Each leg with brass cap installation and each pair of braces need ¼ hour.
- Base assembly needs 1 labor hour.
- Final assembly of table requires 2 labor hours.
- Number of hours per day is 8.
Product structure:
Net requirements plan:
Table:
Period (Day) | ||||||||
Table | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 640 | 640 | 128 | 128 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 640 | 640 | 128 | 128 | ||||
Planned order receipt | 640 | 640 | 128 | 128 | ||||
Planned order release | 640 | 640 | 128 | 128 |
Day 5:
The gross requirement is 640 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 640 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 128 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 6 which will be the planned order receipt in day 7.
Day 8:
The gross requirement is 128 (1 assembly) of Coffee table derived from the given information. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 7 which will be the planned order receipt in day 8.
Top:
Period (Day) | ||||||||
Top | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 640 | 640 | 128 | 128 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 640 | 640 | 128 | 128 | ||||
Planned order receipt | 640 | 640 | 128 | 128 | ||||
Planned order release | 640 | 640 | 128 | 128 |
Day 4:
The gross requirement is 640 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 640 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 128 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 128 (1 assembly) of Top derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 6 which will be the planned order receipt in day 7.
Stain:
Period (Day) | ||||||||
Stain | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 80 | 80 | 16 | 16 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 80 | 80 | 16 | 16 | ||||
Planned order receipt | 80 | 80 | 16 | 16 | ||||
Planned order release | 80 | 80 | 16 | 16 |
Day 4:
The gross requirement is 80 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 80. The lead time is 1 week. The planned order release will be 80 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 80 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 80. The lead time is 1 week. The planned order release will be 80 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 16 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 16. The lead time is 1 week. The planned order release will be 16 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 16 (1 assembly) of Stain derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 16. The lead time is 1 week. The planned order release will be 16 in day 6 which will be the planned order receipt in day 7.
Glue:
Period (Day) | ||||||||
Glue | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 40 | 40 | 8 | 8 | ||||
Scheduled receipt | ||||||||
On hand (100) | 100 | 60 | 20 | 12 | 4 | |||
Net requirement | 0 | 0 | 0 | 0 | ||||
Planned order receipt | ||||||||
Planned order release |
Day 4:
The gross requirement is 40 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 100. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 60 will be available at week 5.
Day 5:
The gross requirement is 40 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 60. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 20 will be available at week 6.
Day 6:
The gross requirement is 8 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 20. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 12 will be available at week 7.
Day 7:
The gross requirement is 8 (1 assembly) of Glue derived from the planned order release of Table. The On hand is 12. Therefore, the net requirement is 0. Therefore there will be no planned order release. The excess inventory 8 will be available at week 8.
Base assembly:
Period (Day) | ||||||||
Base | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 640 | 640 | 128 | 128 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 640 | 640 | 128 | 128 | ||||
Planned order receipt | 640 | 640 | 128 | 128 | ||||
Planned order release | 640 | 640 | 128 | 128 |
Day 4:
The gross requirement is 640 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 640 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 640. The lead time is 1 week. The planned order release will be 640 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 128 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 5 which will be the planned order receipt in day 6.
Day 7:
The gross requirement is 128 (1 assembly) of base assembly derived from the planned order release of Table. The On hand is 0. Therefore, the net requirement is 128. The lead time is 1 week. The planned order release will be 128 in day 6 which will be the planned order receipt in day 7.
Short brace:
Period (Day) | ||||||||
Short Brace | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 1,280 | 1,280 | 256 | 256 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 1,280 | 1,280 | 256 | 256 | ||||
Planned order receipt | 1,280 | 1,280 | 256 | 256 | ||||
Planned order release | 1,280 | 1,280 | 256 | 256 |
Day 3:
The gross requirement is 1,280 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 2 which will be the planned order receipt in day 3.
Day 4:
The gross requirement is 1,280 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 256 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 256 (2 assembly) of short brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 5 which will be the planned order receipt in day 6.
Long brace:
Period (Day) | ||||||||
Long Brace | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 1,280 | 1,280 | 256 | 256 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 0 | 0 | 0 | ||||
Net requirement | 1,280 | 1,280 | 256 | 256 | ||||
Planned order receipt | 1,280 | 1,280 | 256 | 256 | ||||
Planned order release | 1,280 | 1,280 | 256 | 256 |
Day 3:
The gross requirement is 1,280 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 2 which will be the planned order receipt in day 3.
Day 4:
The gross requirement is 1,280 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 1,280. The lead time is 1 week. The planned order release will be 1,280 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 256 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 256 (2 assembly) of long brace derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 256 in day 5 which will be the planned order receipt in day 6.
Leg:
Period (Day) | ||||||||
Leg | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 2,560 | 2,560 | 512 | 512 | ||||
Scheduled receipt | ||||||||
On hand (0) | ||||||||
Net requirement | 2,560 | 2,560 | 512 | 512 | ||||
Planned order receipt | 2,560 | 2,560 | 512 | 512 | ||||
Planned order release | 2,560 | 2,560 | 512 | 512 |
Day 3:
The gross requirement is 2,560 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 2,560. The lead time is 1 week. The planned order release will be 2,560 in day 2 which will be the planned order receipt in day 3.
Day 4:
The gross requirement is 2,560 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 2,560. The lead time is 1 week. The planned order release will be 2,560 in day 3 which will be the planned order receipt in day 4.
Day 5:
The gross requirement is 512 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 512. The lead time is 1 week. The planned order release will be 512 in day 4 which will be the planned order receipt in day 5.
Day 6:
The gross requirement is 512 (4 assembly) of leg derived from the planned order release of base assembly. The On hand is 0. Therefore, the net requirement is 256. The lead time is 1 week. The planned order release will be 512 in day 5 which will be the planned order receipt in day 6.
Brass caps:
Period (Day) | ||||||||
Brass caps | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Gross requirements | 2,560 | 2,560 | 512 | 512 | ||||
Scheduled receipt | ||||||||
On hand (0) | 0 | 440 | 880 | 368 | 856 | 856 | 856 | |
Net requirement | 2,560 | 2,120 | 0 | 144 | ||||
Planned order receipt | 3,000 | 3,000 | 1,000 | |||||
Planned order release | 3,000 | 3,000 | 1,000 |
Day 2:
The gross requirement is 2,560 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 0. Therefore, the net requirement is 2,560. The lead time is 1 week. The planned order release will be 3,000 (1 Lot = 1,000) in day 1 which will be the planned order receipt in day 2. The excess inventory of 440 is available at day 3.
Day 3:
The gross requirement is 2,560 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 440. Therefore, the net requirement is 2,120. The lead time is 1 week. The planned order release will be 3,000 (1 Lot = 1,000) in day 2 which will be the planned order receipt in day 3. The excess inventory of 880 is available at day 4.
Day 4:
The gross requirement is 512 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 880. Therefore, the net requirement is 0. Therefore, there will be no planned release. The excess inventory of 368 is available at day 5.
Day 5:
The gross requirement is 512 (1 assembly) of brass caps derived from the planned order release of legs. The On hand is 368. Therefore, the net requirement is 144. The lead time is 1 week. The planned order release will be 1,000 (1 Lot = 1,000) in day 4 which will be the planned order receipt in day 5. The excess inventory of 856 is available at the next day.
Calculation of labor hours / day:
Master Schedule | Hours Required | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | Day 8 |
Table assembly | 2 | 1280 | 1280 | 256 | 256 | ||||
Top preparation | 2 | 1280 | 1280 | 256 | 256 | ||||
Assemble base | 1 | 640 | 640 | 128 | 128 | ||||
Long brace (2) | 0.25 | 320 | 320 | 64 | 64 | ||||
Short brace (2) | 0.25 | 320 | 320 | 64 | 64 | ||||
Leg (4) | 0.25 | 640 | 640 | 128 | 128 | ||||
Total Hours | 0 | 1280 | 3200 | 3456 | 1920 | 640 | 256 | ||
Employees need @ 8 hours / day | 0 | 160 | 400 | 432 | 240 | 80 | 32 |
The master production schedule is derived from net requirements plan.
Formula to calculate number of hours / each day:
Formula to calculate the number of employees per 8 hour day:
Day 2:
Calculation of total hours for each day for each component:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 3:
Calculation of total hours for each day for each component:
Top preparation:
Assemble base:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 4:
Calculation of total hours for each day for each component:
Table assembly:
Top preparation:
Assemble base:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 5:
Calculation of total hours for each day for each component:
Table assembly:
Top preparation:
Assemble base:
Long brace:
Short brace:
Leg:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 6:
Calculation of total hours for each day for each component:
Table assembly:
Top preparation:
Assemble base:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Day 7:
Calculation of total hours for each day for each component:
Table assembly:
Calculation of total hours / day:
The total hours is calculated by summing all the hours needed for each component in a day.
Calculation of number of employees per 8 hour day:
The number of employees is calculated by dividing the total hours per day with the number of hours per day.
Want to see more full solutions like this?
Chapter 14 Solutions
Principles Of Operations Management
- The deaths are included in the discharges; this includes deaths occurring in less than 48 hours and postoperative deaths. Rehabilitation had 362 discharges, 22 deaths, 1<48 hours, 0 Postoperative. what is the gross death rate for the rehabilitation service?arrow_forwardA copy machine is available 24 hours a day. On a typical day, the machine produces 100 jobs. Each job takes about 3 minutes on the machine, 2 minutes of which is processing time and 1 minute is setup time (logging in, defining the job). About 20 percent of the jobs need to be reworked, in which case the setup time and the processing time have to be repeated. The remainder of the time, the equipment is idle. What is the OEE of the equipment?arrow_forwardHow do you think we can keep updating Toyota's ideas as new technologies come out and what customers want keeps changing?arrow_forward
- Given how TPS has helped change things in so many fields, do you think there are parts of it that might be hard to use in areas that aren’t about making things, like in healthcare or services? If so, why do you think that might be?arrow_forwardDo you feel there is anything positive about rework?arrow_forwardDo you think technology can achieve faster setup times? How would it be implemented in the hospital workforce?arrow_forward
- In your experience or opinion, do you think process changes like organizing workspaces make a bigger difference, or is investing in technology usually the better solution for faster setups?arrow_forwardHave you seen rework done in your business, and what was done to prevent that from occurring again?arrow_forwardResearch a company different than case studies examined and search the internet and find an example of a business that had to rework a process. How was the organization affected to rework a process in order to restore a good flow unit? Did rework hurt a process or improve the organization's operational efficiency? • Note: Include a reference with supportive citations in the discussion reply in your post.arrow_forward
- Setup time is very important in affecting a process and the capacity of a process. How do you reduce setup time? Give examples of reducing setup time. Please Provide a referenecearrow_forwardDo you think TPS was successful? If so, how? Are there other companies that have used TPS? If so, give examples. Please provide a referencearrow_forwardGiven the significant impact on finances, production timelines, and even equipment functionality, as you pointed out, what do you believe is the most effective single strategy a company can implement to significantly reduce the occurrence of rework within their operations?arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,MarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing
- Contemporary MarketingMarketingISBN:9780357033777Author:Louis E. Boone, David L. KurtzPublisher:Cengage LearningPurchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage Learning


