
(a)
Interpretation:
The kekule structure should be drawn for the given molecule
Concept introduction:
- Lone-pair electrons are valence electrons that are not used in bonding.
- A proton is positively charged hydrogen ion. A hybrid ion is a negatively charged hydrogen ion.
- When the atom is neutral, C form 2 bonds, N forms 3 bonds O forms 2 bonds and H or a halogen forms 1 bond.
- A carbocation has a positively charge carbon, a carbon has a negatively charge carbon and a radical has an unpaired electron.
kekule structure:
Without lone pairs of electros in Lewis structures is known as kekule structure.
(b)
Interpretation:
The kekule structure should be drawn for the given molecule
Concept introduction:
- Lone-pair electrons are valence electrons that are not used in bonding.
- A proton is positively charged hydrogen ion. A hybrid ion is a negatively charged hydrogen ion.
- Formal charge = the number of valence electron – the number of electrons the atom has to itself (the entire lone pair electron and one – half of the bonding electrons).
- Lewis structure indicates which atom is bonded together and show lone pairs and formal charge.
- When the atom is neutral, C form 2 bonds, N forms 3 bonds O forms 2 bonds and H or a halogen forms 1 bond.
- A carbocation has a positively charge carbon, a carbon has a negatively charge carbon and a radical has an unpaired electron.
kekule structure:
Without lone pairs of electros in Lewis structures is known as kekule structure.
(c)
Interpretation:
The kekule structure should be drawn for the given molecule
Concept introduction:
- Lone-pair electrons are valence electrons that are not used in bonding.
- A proton is positively charged hydrogen ion. A hybrid ion is a negatively charged hydrogen ion.
- Formal charge = the number of valence electron – the number of electrons the atom has to itself (the entire lone pair electron and one – half of the bonding electrons).
- Lewis structure indicates which atom is bonded together and show lone pairs and formal charge.
- When the atom is neutral, C form 2 bonds, N forms 3 bonds O forms 2 bonds and H or a halogen forms 1 bond.
- A carbocation has a positively charge carbon, a carbon has a negatively charge carbon and a radical has an unpaired electron.
kekule structure:
Without lone pairs of electros in Lewis structures is known as kekule structure.
(d)
Interpretation:
The kekule structure should be drawn for the given molecule
Concept introduction:
- Lone-pair electrons are valence electrons that are not used in bonding.
- A proton is positively charged hydrogen ion. A hybrid ion is a negatively charged hydrogen ion.
- Formal charge = the number of valence electron – the number of electrons the atom has to itself (the entire lone pair electron and one – half of the bonding electrons).
- Lewis structure indicates which atom is bonded together and show lone pairs and formal charge.
- When the atom is neutral, C form 2 bonds, N forms 3 bonds O forms 2 bonds and H or a halogen forms 1 bond.
- A carbocation has a positively charge carbon, a carbon has a negatively charge carbon and a radical has an unpaired electron.
kekule structure:
Without lone pairs of electros in Lewis structures is known as kekule structure.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Organic Chemistry (8th Edition)
- curved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the cured electron-pushing arrows for thw following reaction or mechanistic steps. be sure to account for all bond-breaking and bond making stepsarrow_forwardUsing the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.arrow_forwardSynthesis of Dibenzalacetone [References] Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below. Question 1 1 pt Question 2 1 pt Question 3 1 pt H Question 4 1 pt Question 5 1 pt Question 6 1 pt Question 7 1pt Question 8 1 pt Progress: 7/8 items Que Feb 24 at You do not have to consider stereochemistry. . Draw the enolate ion in its carbanion form. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. ⚫ Separate multiple reactants using the + sign from the drop-down menu. ? 4arrow_forward
- Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)arrow_forwardHi I need help on the question provided in the image.arrow_forwardDraw a reasonable mechanism for the following reaction:arrow_forward
- Draw the mechanism for the following reaction: CH3 CH3 Et-OH Et Edit the reaction by drawing all steps in the appropriate boxes and connecting them with reaction arrows. Add charges where needed. Electron-flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created. H± EXP. L CONT. י Α [1] осн CH3 а CH3 :Ö Et H 0 N о S 0 Br Et-ÖH | P LL Farrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M HCl is titrated with 37.75 mL of NaOH. What is the molarity of the NaOH?arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning

