Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 22E
Ultrasound used in a medical imager has frequency 4.86 MHz and wavelength 0.313 mm. Find (a) the angular frequency, (b) the wave number, and (c) the wave speed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In deep water, the speed of surface waves is described by the relationship v = g/w,
where w is the angular frequency. If a wave has a period of 3.00 s, what is its
wavelength?
A sinusoidall wave traveling in the positive x direction has an amplitude of 30.0 cm, a wavelength of 80.0 cm, and a frequency of 18.0 Hz. Find the angular frequency.
O 103.5010 Hz
O 100.5310 Gz
O 100.5310 Hz
O 105.3010 Hz
A standing wave is the result of superposition of two harmonic waves given by the equations y1 (x, t) =
A sin(wt – kæ) and y2(x, t) = A sin(wt + kæ). The angular frequency is w = 37 rad/s and the k = 27
rad/m is the wave number.
(a) Give an expression for the amplitude of standing wave.
(b) Determine the frequency.
(c) Determine the wavelength of the wave
Chapter 14 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Write electron configurations for each element. Use the symbol of the previous noble gas in brackets to represe...
Introductory Chemistry (6th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology (7th Edition)
19. Feather color in parakeets is produced by the blending of pigments produced from two biosynthetic pathways ...
Genetic Analysis: An Integrated Approach (3rd Edition)
Using the forked-line, or branch diagram, method, determine the genotypic and phenotypic ratios of these trihyb...
Concepts of Genetics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forwardA standing wave is the result of superposition of two harmonic waves given by the equations y1(x;t) =Asin(ωt - kx) and y2(x; t) = Asin(ωt + kx). The angular frequency is ω = 3π rad/s and the k = 2πrad/m is the wave number.(a) Give an expression for the amplitude of standing wave. b) calculate the frequency of the wavearrow_forwardThis figure shows a sinusoidal wave that is traveling from left to right, in the +x-direction. Assume that it is described by a frequency of 13.2 cycles per second, or hertz (Hz). MA 5.80 cm. (a) What is the wave's amplitude (in cm)? cm (b) What is the wavelength (in cm)? cm 9.21 cm (c) Calculate the wave's period (in s). (d) Compute the speed of this wave (in m/s). m/s iarrow_forward
- A standing wave is the result of superposition of two harmonic waves given by the equations y1(x;t) =Asin(ωt - kx) and y2(x; t) = Asin(ωt + kx). The angular frequency is ω = 3π rad/s and the k = 2πrad/m is the wave number.(a) Give an expression for the amplitude of standing wave.arrow_forwardA standing sine wave is the result of superposition of two sine waves given by the equations Y1 (x, t) = A sin(wt – kæ) and y2(x, t) = A sin(wt +kæ). The angular frequency is w = 100 rad/s and the k = 50 rad/m is the wave number. Page 2 (a) Calculate the new amplitude A'(x), if the original amplitude of the waves A = 2.5 cm. (b) A calculate the position of a particle at x = this phase angle. (1/4)A and t = (1/2)T that corresponds toarrow_forwardThe speed of ultrasound in human body is 1540 m/s. A procedure is performed with a frequency of 2 MHz is used. To monitor the heart rate of a fetus: the maximum speed of a beating heart is 8 cm/s. What is the maximum beat frequency is Hz?arrow_forward
- Two waves are described by Y1=0.39 sin[z( 6x-220t)] and y2 = 0.39 sin[a(6x - 220t) + T/ 5], where y1. y2, and x are in meters and t is in seconds. When these two waves are combined, a traveling wave is produced. What are the (a) amplitude, (b) wave speed, and (c) wavelength of that traveling wave? (a) Number 0.7799 Units m (b) Number 36.66 Units m/s (c) Number 1.06 Units marrow_forwardAn equation describing a wave is given by y = 0.04 sin (60x - 40t) where parameters are in Sl units. What is the angular frequency (in rad/s) and the wavelength (in m) of the wave? O 40, 0.10 40, 60 O 6.4, 0.10 40, 6.4 6.4, 60 6.4, 0.017arrow_forwardA sound wave has an intensity level of 121.3 dB in air. The density of air at 20.0°C is ρ = 1.20 kg/m3 (see Table 9.1). The speed of sound in air at 20.0°C is v = 343 m/s (see Table 12.1). What is the pressure amplitude of the wave?arrow_forward
- A sinusoidal wave traveling in the positive x direction has an amplitude of 30.0 cm, a wavelength of 80.0 cm, and a frequency of 16.0 Hz. Find the angular frequency. 105.3010 Hz 100.5310 Hz 103.5010 Hz 100.5310 Gzarrow_forwardIf a wave has an amplitude of A = 4.0 m, a wave number k = 0.32 rad/m, and an angular frequency w = 0.7 rad/s, then find the height of the wave at a distance of x = 1.3 m from the origin at a time of t = 8 seconds.. Hint: Calc in radians!arrow_forwardTwo waves are described by y1 = 0.30 sin[p (5x - 200t)] and y2 = 0.30 sin[p (5x - 200t) + p/3], where y1, y2, and x are in meters and t is in seconds.When these two waves are combined, a traveling wave is produced.What are the (a) amplitude, (b) wave speed, and (c) wavelength of that traveling wave?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License