Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 39E
When a stretched string is clamped at both ends, its fundamental frequency is 140 Hz. (a) What’s the next higher frequency? If the same string, with the same tension, is now clamped at one end and free at the other, what are (b) the fundamental and (c) the next higher frequency?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a)The lowest frequency string of a violin has a length of 0.33 m and is at a tension of 55 N. The fundamental frequency (n = 1) is 196 Hz. What is the mass per unit length of the string?(b) The fundamental frequency of the heaviest string of a cello is 65.4 Hz. What is the frequency pulsation of the third harmonic of this string with the fundamental frequency, 196 Hz, of the highest string heavy?
A string is 3 m long and has a mass of 0.001 kg. If we want the fundamental frequency of the string to be 175 Hz, how much tension should we apply to it?
A pipe open at both ends has a fundamental frequency of 3.00 x 102 Hz when the temperature is 0°C. (a) What is the length of the pipe? (b) What is the fundamental frequency at a temperature of 30.0°C?
Chapter 14 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
During exponential growth, a population always (A) has a constant per capita population growth rate. (B) quickl...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A string with a mass of 0.30 kg has a length of 4.00 m. If the tension in the string is 50.00 N, and a sinusoidal wave with an amplitude of 2.00 cm is induced on the string, what must the frequency be for an average power of 100.00 W?arrow_forwardA pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardTwo strings on a musical instrument are tuned to play at 392 Hz (G) and 494 Hz (B). (a) What are the frequencies of the first two overtones for each string? (b) If the two strings have the same length and are under the same tension, what must be the ratio of their masses (mg/mB)? (c) If the strings, instead, have the same mass per unit length and are under the same tension, what is the ratio of their lengths (lG/lB)? (d) If their masses and lengths are the same, what must be the ratio of the tensions in the two strings?arrow_forward
- A guitar player tunes the fundamental frequency of a guitar string to 450 Hz. (a) What will be the fundamental frequency if she then increases the tension in the string by 29%? (b) What will it be if, instead, she decreases the length along which the string oscillates by sliding her finger from the tuning key one-third of the way down the string toward the bridge at the lower end? (a) Number i 80 (b) Number i 77 Units Units Hz Hzarrow_forwardTwo identical guitar strings have identical tensions of 80.0 N and produce fundamental frequencies of A = 110 Hz. If the tension of one string drops by 2.0 N, what is the difference in frequency (in Hz) of the fundamental frequency produced by the two strings?arrow_forwardA guitar string is cm 43.5 long and produces a fundamental frequency of 489 Hz. By placing a finger on the string to rest it on the neck of the guitar, the length is reduced without changing the tension of the string. How much should the length of the string be shortened in order to produce a fundamental frequency of 683 Hz?arrow_forward
- A pipe open at both ends has a fundamental frequency of 300 Hz when the temperature is 0°C. (a) What is the length of the pipe? (b) What is the fundamental frequency at a temperature of 30.0°C?arrow_forwardA rope 2.0 m long has a mass of 2.4x10^-2 kg. When it is fixed at both ends it vibrates with a fundamental frequency of 150 Hz. The frequency of the third harmonic is what? Must be answered in Hz or kHz.arrow_forwardA pipe 80 cm long is open at both ends. How long must a second pipe, closed at one end, be if it is to have the same fundamental resonance frequency as the open pipe? ○ 80 cm ○ 20 cm ○ 160 cm ○ 40 cmarrow_forward
- A guitar string with a linear density of 2.0 g/m is stretched between supports that are 60 cm apart. The string is observed to form a standing wave with three antinodes when driven at a frequency of 420 Hz. What are (a) the frequency of the fifth harmonic of this string and (b) the tension in the string?arrow_forwardTwo strings, A and B, have respective mass densities #a and Hg respectively. The linear mass density, Hg, of string-B is nine times that of string-A (Hg = 9Pa). If both strings have the same fundamental frequency when kept at the same tension, then the ratio of their lengths LA/Lg is equal to: 9 1/9 1/3 3arrow_forwardOne of the strings on a musical instrument is 0.500 m in length and has linear mass density 1.17 * 10-3 kg/m. The second harmonic on this string has frequency 512 Hz. (a) What is the tension in the string? (b) The speed of sound in air at 20°C is 344 m/s. If the string is vibrating at its fundamental frequency, what is the wavelength of the sound wave that the string produces in air?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY