Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 78P
Use a computer to form the sum implied in the caption of Figure 14.17, taking ω = 1 s−1 and using (a) the three terms shown and (b) 10 terms (note that only odd harmonics appear in the sum). Plot your result over one cycle (t from 0 to 2π) and compare with the square wave shown in the figure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
During a relaxed walking pace, a person's leg can be thought of as a physical pendulum of length L that pivots about the hip. What is the relaxed walking frequency in Hz for a person whose leg is of length 1.387m. In this approximation, assume the leg is a uniform rod ("uniform" implying the leg has a uniform mass density along its length). Note: In the space below, please enter you numerical answer. Do not enter any units. If you enter units, your answer will be marked as incorrect.
Hello, can you help me solve this problem? I need to know the formula and complete and detailed solution of this to be my review on my upcoming exam. I really appreciate any help you can provide.
Pretty please, Thank you in advance.
Starting with a diagram and fundmantal definitions and/or principles, show how the propagation of a
wave pulse can be understood/modeled as a phase-staggered collection of identical oscillators. The more steps
and explanation you include, the more thorough and clear your analysis,
Chapter 14 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. What happens to a low-mass star after ...
Cosmic Perspective Fundamentals
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
WH AT IF? Suppose two plant populations exchange pollen and seeds. In one population, individuals of geno-type...
Campbell Biology (11th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Need help answering these questions.arrow_forwardPlease help solve for U.arrow_forwardThe position 7 (in meters) of a particle of mass m (in kilograms) is described as two perpendicular oscillations that are out of phase with each other: 7 = rēi + yế2 = cos(wt)ěi + cos(wt + ø)ē2, where o is the constant phase angle difference. a. Show that the position 7 of the particle satisfies the harmonic oscillator equation -w?r. dt? Compute the particle's velocity v = dr/dt, dot product 7 · v, and angular momentum L = mĩ x v. Is the angular momentum constant in both magnitude and direction? b. Set w = 2 rad / s and ø = T/3 rad. Make a table with the following columns: t, x, y, Væ, Vy, and7· v. Put the units beside their respective variables and enclose the units inside the parentheses. Set the initial time to be to = 0 and use the spreadsheet to compute the values of xo, Yo, VOx, VOy, and ro · vo Write down the spreadsheet formula for the first xo, Yo, VOz, VOys and 7o - vo , assuming that the initial time to is spreadsheet cell A2.arrow_forward
- A uniform plane wave has the generic expression Φ(z,t) = A cos(ωt – kz + δ) with the following given parameter values: wave amplitude = 10, wave frequency in Hz f = 500 Hz, phase velocity vph = 10 m/s, and the phase angle δ = 60o. Find the values of the parameters A, ω, and k. ..arrow_forwardThe provided image shows vibrations from a car idle at 33 Hz. The fourier transform of the data is shown in the bottom plot. Are the following statements true or false? A fourier series that would represent the vibrational data would contain two frequences of 15 Hz and 30 Hz. This data has a vibrational noise at a fundamental frequency of 15 Hz as well as the three overtones to this fundamental. The oscillations seen in the data are due to the vibrational noise at 15 Hz and 30 Hz.arrow_forwardProblem 5 (a) show that the following function satisfies the wave equation (this is a spherical wave). Show that its velocity is velocity v = ** f(r,t) = C = cos(kr - wt) The wave fronts are spherical shells at radius r that propagate outward from the origin; the amplitude of the disturbance decreases as the distance from the source. For this, use the Laplacian in spherical coordinates: 1 0 √²f= Acoustic Monopole af 1 მ r²sine de sinė 1 a²ƒ r²sin²0 04²arrow_forward
- A sinusoidal wave of Vmax = 10 V and T= 40 ms periodic time, Calculate the following: Veff=Vrms of this wave: The frequency f : Write the equation of this wave using V=Vmax sin [ (2πf)]tarrow_forwardCan you solve and explain it plz . just describe itarrow_forwardQuestion 6. The complex Fourier series representation of a periodic function of period 2π is given by ∞ FS(t) = Σ n=-∞ Cne-int I 4 where Cn = 2 + (1−3(−1)n)j. 3 Find, to three decimal places, the amplitude cn and phase on for n = 1, 2. Enter the real and imaginary values of c-₁ in the appropriate boxes below. Enter |c₁| correct to 3 decimal places: Enter 1 correct to 3 decimal places: Enter |c₂| correct to 3 decimal places: Enter 2 correct to 3 decimal places: Enter the real part of c-1: Enter the imaginary part of c-1 :arrow_forward
- Please answer in detail and I will upvote. Thank you.arrow_forwardThe period of oscillation T of a water surface wave isassumed to be a function of density ρ , wavelength l , depth h , gravity g , and surface tension Y . Rewrite this relationshipin dimensionless form. What results if Y is negligible?Hint: Take l , ρ , and g as repeating variables.arrow_forwardProblem 1: A string of length 1.5 m oscillates in the standing wave pattern shown in the figure below. The string has a linear density u = acceleration due to gravity is g = 9.8 m/sec². (a) What is the speed of the waves? (b) What is the frequency of the oscillations? (c) Suppose the string continues to oscillate with the frequency you found in part (b). How many nodes will the standing wave pattern have if the suspended mass is now M 7.35 x 10-3 kg/m and the suspended mass is M 1.2 kg. The 10.8 kg? signal generator Marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY