Concept explainers
Tsunamis are ocean waves generally produced when earthquakes suddenly displace the ocean floor, and with it a huge volume of water. Unlike ordinary waves on the ocean surface, a tsunami involves the entire water column, from surface to bottom. To a tsunami, the ocean is shallow—and that makes tsunamis shallow-water waves, whose speed is
FIGURE 14.39 People flee as the devastating tsunami of December 2004 strikes Thailand (Passage Problems 81-84).
A tsunami is traveling at 450 km/h when the ocean depth abruptly doubles. Its new speed is roughly
- a. 225 km/h.
- b. 320 km/h.
- c. 640 km/h.
- d. 900 km/h.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology: An Introduction
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Introductory Chemistry (6th Edition)
- How many times a minute does a boat bob up and down on ocean waves that have a wavelength of 40.0 m and a propagation speed of 5.00 m/s?arrow_forwardPorpoises emit sound waves that they use for navigation. If the wavelength of the sound wave emitted is 4.5 cm, and the speed of sound in the water is v=1530 m/s, what is the period of the sound?arrow_forwardWind gusts create ripples on the ocean that have a wavelength at 5.00 cm and propagate at 2.00m/s. What is their frequency?arrow_forward
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardRank the waves represented by the following functions from the largest to the smallest according to (i) their amplitudes, (ii) their wavelengths, (iii) their frequencies, (iv) their periods, and (v) their speeds. If the values of a quantity are equal for two waves, show them as having equal rank. For all functions, x and y are in meters and t is in seconds. (a) y = 4 sin (3x 15t) (b) y = 6 cos (3x + 15t 2) (c) y = 8 sin (2x + 15t) (d) y = 8 cos (4x + 20t) (e) y = 7 sin (6x + 24t)arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forward
- The displacement of the air molecules in sound wave is modeled with the wave function s(x,t)=5.00nmcos(91.54m1x3.14104s1t) . (a) What is the wave speed of the sound wave? (b) What is the maximum speed of the air molecules as they oscillate in simple harmonic motion? (c) What is the magnitude of the maximum acceleration of the air molecules as they oscillate in simple harmonic motion?arrow_forwardA source of sound vibrates with constant frequency. Rank the frequency of sound observed in the following cases from highest to the lowest. If two frequencies are equal, show their equality in your ranking. All the motions mentioned have the same speed, 25 m/s. (a) The source and observer are stationary. (b) The source is moving toward a stationary observer. (c) The source is moving away from a stationary observer. (d) The observer is moving toward a stationary source. (e) The observer is moving away from a stationary source.arrow_forwardProblems 32 and 33 are paired. N Seismic waves travel outward from the epicenter of an earthquake. A single earthquake produces both longitudinal seismic waves known as P waves and transverse waves known as S waves. Both transverse and longitudinal waves can travel through solids such as rock. Longitudinal waves can travel through fluids, whereas transverse waves can only be sustained near the surface of a fluid, not inside the fluid. When seismic waves encounter a fluid medium such as the liquid outer core of the Earth, only the longitudinal P wave can propagate through. Geophysicists can model the interior of the Earth by knowing where and when S and P waves were detected by seismographs after an earthquake (Fig. P17.32). Assume the average speed of an S wave through the Earths mantle is 5.4 km/s and the average speed of a P wave is 9.3 km/s. After an earthquake, a seismograph finds that the P wave arrives 1.5 min before the S wave. How far is the epicenter from the detector? FIGURE P17.32arrow_forward
- A sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forwardA string has a mass of 150 g and a length of 3.4 m. One end of the string is fixed to a lab stand and the other is attached to a spring with a spring constant of ks=100 N/m. The free end of the spring is attached to another lab pole. The tension in the string is maintained by the spring. The lab poles are separated by a distance that stretches the spring 2.00 cm. The string is plucked and a pulse travels along the string. What is the propagation speed of the pulse?arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning