Chemistry: The Central Science (13th Edition)
13th Edition
ISBN: 9780321910417
Author: Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 18E
(a) What are the units usually used to express the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. The rate constant for the reaction, 2 N₂O5 (g) → 4 NO2 (g) + O2 (g), doubles when the
temperature is raised from 295.65 K to 300.62 K.
(a) Determine the activation energy (in kJ/mol) for the reaction, assuming that the pre-
exponential factor, A, in the Arrhenius equation is independent of temperature.
(b) At what temperature would you predict this rate constant to increase by another factor
of 10 relative to its value at 300.62 K?
Chapter 14 Solutions
Chemistry: The Central Science (13th Edition)
Ch. 14.2 - Identify the force present and explain whether...Ch. 14.2 - Identify the force present and explain whether...Ch. 14.2 - Which of the following cannot leave or enter a...Ch. 14.2 - Prob. 14.2.2PECh. 14.2 - According to the first law of thermodynamics, what...Ch. 14.2 - Write an equation that expresses the first law of...Ch. 14.3 - Calculate AB and determine whether the process is...Ch. 14.3 - For the following processes, calculate the change...Ch. 14.3 - A gas is confined to a cylinder fitted with a...Ch. 14.3 - Consider a system consisting of two oppositely...
Ch. 14.3 - Prob. 14.6.1PECh. 14.3 - Indicate which of the following is independent of...Ch. 14.4 - During a normal breath, our lungs expand about...Ch. 14.4 - How much work (in J) is involved in a chemical...Ch. 14.4 - Why is the change in enthalpy usually easier to...Ch. 14.4 - Under what condition will the enthalpy change of a...Ch. 14.4 - Assume that the following reaction occurs at...Ch. 14.4 - Suppose that the gas-phase reaction 2NO(g) + 02(g)...Ch. 14.5 - Which of the following statements is or are true?...Ch. 14.5 - Prob. 14.10.2PECh. 14.5 - In the accompanying cylinder diagram, a chemical...Ch. 14.5 - Prob. 14.11.2PECh. 14.6 - Consider the two diagrams that follow. Based on...Ch. 14.6 - Consider the conversion of compound A into...Ch. 14.6 - What is the electrostatic potential energy (in...Ch. 14.6 - What is the electrostatic potential energy (in...Ch. 14.6 - Prob. 14.14.1PECh. 14.6 - Use the equations given in Problem 5.15 to...Ch. 14.6 - A sodium ion, Na+, with a charge of 1.6 x 10-19 C...Ch. 14.6 - A magnesium ion, Mg2+, with a charge of 3.2 x...Ch. 14 -
5.74 Using values from Appendix C, calculate the...Ch. 14 - Complete combustion of 1 mol of acetone (C2H6O)...Ch. 14 -
5.87 Consider the reaction 2H(g) + O2(g) ...Ch. 14 - The air bags that provide protection in...Ch. 14 -
5.111 From the following data for three...Ch. 14 -
5.123 Consider two solutions, the first being...Ch. 14 -
For each of the following transitions, give the...Ch. 14 - In this chapter, we have learned about the...Ch. 14 -
6.12 State where in the periodic table these...Ch. 14 - Einstein's 1905 paper on the photoelectric effect...Ch. 14 -
5.48 Consider the decomposition of liquid...Ch. 14 - Under constant-volume conditions, the heat of...Ch. 14 - Given the data use Hess's law to calculate H for...Ch. 14 -
5.67
What is meant by the term standard...Ch. 14 - S
5.68
What is the value of the standard enthalpy...Ch. 14 - For each of the following compounds, write a...Ch. 14 - Write balanced equations that describe the...Ch. 14 - The following is known as the thermite reaction:...Ch. 14 - (a) What are the units usually used to express the...Ch. 14 - Using values from Appendix C , calculate the...Ch. 14 -
5.77 Gasoline is composed primarily of...Ch. 14 - Prob. 21ECh. 14 - Ethanol (C2H5OH) is blended with gasoline as an...Ch. 14 -
5.80 Methanol (CH3OH) is used as a fuel in race...Ch. 14 -
5.81 Without doing any calculations, predict the...Ch. 14 -
5.82 Without doing any calculations, predict...Ch. 14 - Use bond enthalpies in Table 5.4 Q to estimate for...Ch. 14 - Use bond enthalpies in Table 5.40 to estimate for...Ch. 14 - Use enthalpies of formation given in Appendix C to...Ch. 14 -
5.86
The nitrogen atoms in an N2 molecule are...Ch. 14 -
5.89
What is meant by the term fuel value?
Which...Ch. 14 -
5.90
Which releases the most energy when...Ch. 14 -
5.91
A serving of a particular ready-to-serve...Ch. 14 -
5.92 A pound of plain M&M® candies contains 96 g...Ch. 14 -
5.93 The heat of combustion of fructose,...Ch. 14 -
5.94 The heat of combustion of ethanol,...Ch. 14 -
5.95 The standard enthalpies of formation of...Ch. 14 -
5.98 It is interesting to compare the ‘fuel...Ch. 14 - At the end of 2012, global population was about...Ch. 14 - Prob. 39ECh. 14 - (a) For a generic second-order reaction, what...Ch. 14 - A sample of gas is contained in a...Ch. 14 - Limestone stalactites and stalagmites are formed...Ch. 14 - Consider the systems shown in Figure 5.10. In one...Ch. 14 -
5.105 A house is designed to have passive solar...Ch. 14 -
5.108 A coffee-cup calorimeter of the type shown...Ch. 14 -
5.107
When a 0.235-9 sample of benzoic acid is...Ch. 14 -
5.108 Meals-ready-to-eat (MREs) are military...Ch. 14 - 5.109 Burning methane in oxygen can produce three...Ch. 14 - Prob. 49ECh. 14 - Ammonia (NH3) boils at -33 °C; at this temperature...Ch. 14 - Prob. 51ECh. 14 - Prob. 52ECh. 14 -
5.116 TheSun supplies about 1.0 kilowatt of...Ch. 14 -
5.117 Itis estimated that the net amount of...Ch. 14 -
5.118 At 20 °C (approximately room temperature)...Ch. 14 - Suppose an Olympic diver who weighs 52.0 kg...Ch. 14 -
5.120 Consider the combustion of a single...Ch. 14 -
5.121 Consider the following unbalanced...Ch. 14 - Consider the following acid-neutralization...Ch. 14 -
5.125 A sample of a hydrocarbon is combusted...Ch. 14 -
5.126 The methane molecule, CH4, has the geometry...Ch. 14 -
5.127 One of the best-selling light, or...Ch. 14 - A source of electromagnetic radiation produces...Ch. 14 - Which type of visible light has a longer...Ch. 14 - Consider the following three statements: For any...Ch. 14 - Prob. 66ECh. 14 - Prob. 67ECh. 14 -
A laser emits light that has a frequency of 4.69...Ch. 14 - Prob. 69ECh. 14 - Calculate the velocity of a neutron whose de...Ch. 14 - An orbital has n = 4 and ml = 0, 1, 2, 3 -3, - 2,...Ch. 14 -
What is the designation for the subshell with = 5...Ch. 14 - How many of the elements in the second row of the...Ch. 14 - Write the electron configuration for silicon,...Ch. 14 - A certain atom has an ns2np2electron configuration...Ch. 14 -
Which group of elements is characterized by an...Ch. 14 -
A certain atom has a [noble gas]5s24d105p4...Ch. 14 - Prob. 78ECh. 14 - Prob. 79ECh. 14 -
6.2 A popular kitchen appliance produces...Ch. 14 - 6.3 The following diagrams represent two...Ch. 14 -
6.4 Stars do not all have the same temperature....Ch. 14 - 6 5 The familiar phenomenon of a rainbow results...Ch. 14 -
6.7 A certain quantum mechanical system has the...Ch. 14 - Consider the three electronic transitions in a...Ch. 14 - Prob. 86ECh. 14 -
6.9 The contour representation of one of the...Ch. 14 -
6.10 The accompanying drawing shows a contour...Ch. 14 -
8.11 Four possible electron configurations for a...Ch. 14 -
6.14
a What is the relationship between the...Ch. 14 - Label each of the following statements as true or...Ch. 14 - Determine which of the following statements are...Ch. 14 - Arrange the following kinds of electromagnetic...Ch. 14 - List the following types of electromagnetic...Ch. 14 - What is the frequency of radiation that has a...Ch. 14 - What is the frequency of radiation whose...Ch. 14 - A laser pointer used in a lecture hall emits light...Ch. 14 - Prob. 98AECh. 14 - If human height were quantized in 1-foot...Ch. 14 - A gas is confined to a cylinder under constant...Ch. 14 - The complete combustion of ethanol, C2H5OH(l), to...Ch. 14 - The decomposition of Ca(OH)2(s) into CaO(s) and...Ch. 14 - Prob. 103AECh. 14 -
5.42 Without referring to tables, predict which...Ch. 14 - Consider the following reaction: 2 Mg(s) + 02(g)2...Ch. 14 -
544 Consider the following reaction:
2...Ch. 14 - When solutions containing silver ions and chloride...Ch. 14 - At one time, a common means of forming small...Ch. 14 - Prob. 109AECh. 14 - 5.49
a What are the units of molar heat...Ch. 14 - Two solid objects, A and B, are placed in boiling...Ch. 14 - What is the specific heat of liquid water? What is...Ch. 14 -
5.52
a. Which substance in Table 5.2 requires...Ch. 14 - The specific heat of octane, C8H18(l), is 2.22...Ch. 14 -
6.54 Consider the data about gold metal in...Ch. 14 - When a 6-50-g sample of solid sodium hydroxide...Ch. 14 -
5.56
a. When a 4 25-g sample of solid ammonium...Ch. 14 - A 2.200-g sample of quinone (C5H402) is burned in...Ch. 14 -
8.68 A 1.800-g sample of phenol (C6H5OH) was...Ch. 14 -
5.60 Under constant-volume conditions, the heat...Ch. 14 -
5.61 Can you use an approach similar to Hess's...Ch. 14 -
5.62 Consider the following hypothetical...Ch. 14 - Calculate the enthalpy change for the reaction...Ch. 14 - From the enthalpies of reaction calculate H for...Ch. 14 - From the enthalpies of reaction Calculate H for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which reaction mechanism assumptions are unimportant in describing simple ionic reactions between cations and anions? Why?arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardGive at least two physical properties that might be used to determine the rate of a reaction.arrow_forward
- A reaction is started by mixing reactants. As time passes, the rate decreases. Explain this behavior that is characteristic of most reactions.arrow_forwardAccount for the relationship between the rate of a reaction and its activation energy.arrow_forwardExplain what is meant by the average rate of a reaction.arrow_forward
- . What does the activation energy for a reaction represent? How is the activation energy related to whether a collision between molecules is successful?arrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardSubstances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forward
- Iodomethane (CH3I) is a commonly used reagent in organic chemistry. When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethanes ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA]0 ( mol/L) [CH3I]0 ( mol/L) Initial Rate (mol/Ls) 0.100 0.100 3.20 104 0.100 0.200 6.40 104 0.200 0.200 1.28 103 Which of the following could be a possible mechanism to explain the initial rate data? MechanismIDNA+CH3IDNACH3++IMechanismIICH3ICH3++ISlowDNA+CH3+DNACH3+Fastarrow_forward(Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forwardTable 11-2 illustrates how the average rate of a reaction decreases with time. Why does the average rate decrease with time? How does the instantaneous rate of a reaction depend on time? Why are initial rates used by convention?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY