Statistics for Business and Economics (13th Edition)
13th Edition
ISBN: 9780134506593
Author: James T. McClave, P. George Benson, Terry Sincich
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.69ACI
a.
To determine
To calculate: The forecast values for 2016 and 2017 by using simple linear regression model.
To obtain: The 95% prediction intervals for the forecasts.
b.
To determine
To calculate: The Holt forecasts for 2016 and 2017 by using
To compare: The results with the simple linear regression forecasts of part a.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on Equity, Earnings Per Share, Average Yield, and Dividends Per Share to predict the average P/E ratio for a company. Use Excel to develop the multiple linear regression model. Assume a 5% level of significance.
Which independent variable is the strongest predictor of the average P/E ratio of a company?
A. Total Revenues
B. Average Yield
C. Earnings Per Share
D.Return on Equity
E. Total Assets
F.Dividends Per Share
Company
Type
Total Revenues
Total Assets
Return on Equity
Earnings per Share
Average Yield
Dividends per Share
Average P/E Ratio
AFLAC
6
7251
29454
17.1
2.08
0.9
0.22
11.5
Albertson's
4
14690
5219
21.4
2.08
1.6
0.63
19
Allstate
6
20106
80918
20.1
3.56
1
0.36
10.6
Amerada Hess
7
8340
7935
0.2
0.08
1.1
0.6
698.3
American General
6
3362
80620
7.1
2.19
3
1.4
21.2
American Stores
4
19139
8536
12.2
1.01
1.4
0.34
23.5
Amoco
7
36287…
The following chart shows the actual sales for the last 12 months for a given company. Assume that sales are best fit by a linear trend and you can use single linear regression to set up a forecasting model. Using the sales data answer below questions (justify your answers):
A.What would be the typical linear regression equation for the number of sales?
B.Make the sales forecast for period 15 of next year.
C. Make the sales forecast for period 17 of next year.
D. What is the standard error for the data?
Refer to the Buena School bus data. Develop a regression equation that expresses the relationship between age of the bus and maintenance. The age of the bus is the inde- pendent variable.
Draw a scatter diagram. What does this diagram suggest as to the relationship
between the two variables? Is it direct or indirect? Does it appear to be strong or
weak?
Develop a regression equation. How much does an additional year add to the main-
tenance cost. What is the estimated maintenance cost for a 10-year-old bus?
Conduct a test of hypothesis to determine whether the slope of the regression line is greater than zero. Use the .05 significance level. Interpret your findings from parts (a),
(b), and (c) in a brief report.
Chapter 14 Solutions
Statistics for Business and Economics (13th Edition)
Ch. 14.1 - Explain in words how to construct a simple index.Ch. 14.1 - Explain in words how to calculate the following...Ch. 14.1 - Explain in words the difference between Laspeyres...Ch. 14.1 - The table below gives the prices for three...Ch. 14.1 - Refer to Exercise 14.4. The next table gives the...Ch. 14.1 - Annual median family income. The table below lists...Ch. 14.1 - Annual U.S. craft beer production. While overall...Ch. 14.1 - Quarterly single-family housing starts. The...Ch. 14.1 - Spot price of natural gas. The table shown in the...Ch. 14.1 - Employment in farm and nonfarm categories....
Ch. 14.1 - GOP personal consumption expenditures. The gross...Ch. 14.1 - GDP personal consumption expenditures (contd)....Ch. 14.1 - Weekly earnings for workers. The table in the next...Ch. 14.1 - Production and price of metals. The level or price...Ch. 14.2 - Describe the effect of selecting an exponential...Ch. 14.2 - A monthly time series is shown in the table to the...Ch. 14.2 - Annual U.S. craft beer production. Refer to the...Ch. 14.2 - Foreign fish production. Overfishing and pollution...Ch. 14.2 - Yearly price of gold. The price of gold is used by...Ch. 14.2 - Personal consumption in transportation. There has...Ch. 14.2 - OPEC crude oil imports. The data in the table...Ch. 14.2 - SP 500 Stock Index. Standard Poors 500 Composite...Ch. 14.5 - How does the choice of the smoothing constant w...Ch. 14.5 - Refer to Exercise 14.4 (p. 14-9). The table with...Ch. 14.5 - Annual U.S. craft beer production. Refer to...Ch. 14.5 - Quarterly single-family housing starts. Refer to...Ch. 14.5 - Consumer Price Index. The CPI measures the...Ch. 14.5 - OPEC crude oil imports. Refer to the annual OPEC...Ch. 14.5 - SP 500 Stock Index. Refer to the quarterly...Ch. 14.5 - SP 500 Stock Index (contd). Refer to Exercise...Ch. 14.5 - Monthly gold prices. The fluctuation of gold...Ch. 14.6 - Annual U.S. craft beer production. Refer to the...Ch. 14.6 - Annual U.S. craft beer production (contd). Refer...Ch. 14.6 - SP 500 Stock Index. Refer to your exponential...Ch. 14.6 - SP 500 Stock Index (contd). Refer to your Holt...Ch. 14.6 - Monthly gold prices. Refer to the monthly gold...Ch. 14.6 - US school enrollments. The next table reports...Ch. 14.8 - The annual price of a finished product (in cents...Ch. 14.8 - Retail sales in Quarters 14 over a 10-year period...Ch. 14.8 - What advantage do regression forecasts have over...Ch. 14.8 - Mortgage interest rates. The level at which...Ch. 14.8 - Price of natural gas. Refer to Exercise 14.9 (p....Ch. 14.8 - A gasoline tax on carbon emissions. In an effort...Ch. 14.8 - Predicting presidential elections. Researchers at...Ch. 14.8 - Life insurance policies in force. The table below...Ch. 14.8 - Graphing calculator sales. The next table presents...Ch. 14.8 - Prob. 14.47ACICh. 14.9 - Define autocorrelation. Explain why it is...Ch. 14.9 - For each case, indicate the decision regarding the...Ch. 14.9 - What do the following Durbin-Watson statistics...Ch. 14.9 - Company donations to charity. Refer to the Journal...Ch. 14.9 - Forecasting monthly car and truck sales. Forecasts...Ch. 14.9 - Predicting presidential elections. Refer to the...Ch. 14.9 - Mortgage interest rates. Refer to the data on...Ch. 14.9 - Price of natural gas. Refer to the annual data on...Ch. 14.9 - Life insurance policies in force. Refer to the...Ch. 14.9 - Modeling the deposit share of a retail bank....Ch. 14 - Insured Social Security workers. Workers insured...Ch. 14 - Insured Social Security workers (contd). Refer to...Ch. 14 - Retail prices of food items. In 1990, the average...Ch. 14 - Demand for emergency room services. With the...Ch. 14 - Mortgage interest rates. Refer to the annual...Ch. 14 - Price of Abbott Labs stock. The yearly closing...Ch. 14 - Price o f Abbott Labs stock (contd). Refer to...Ch. 14 - Prob. 14.65ACICh. 14 - Prob. 14.66ACICh. 14 - Quarterly GOP values (contd). Refer to Exercise...Ch. 14 - Prob. 14.68ACICh. 14 - Prob. 14.69ACICh. 14 - Prob. 14.70ACICh. 14 - IBM stock prices. Refer to Example 14.1 (p. 14-5)...Ch. 14 - Prob. 14.72ACI
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Life Expectancy The following table shows the average life expectancy, in years, of a child born in the given year42 Life expectancy 2005 77.6 2007 78.1 2009 78.5 2011 78.7 2013 78.8 a. Find the equation of the regression line, and explain the meaning of its slope. b. Plot the data points and the regression line. c. Explain in practical terms the meaning of the slope of the regression line. d. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 2019? e. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 1580?2300arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardDoes Table 1 represent a linear function? If so, finda linear equation that models the data.arrow_forward
- What does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardXYZ Corporation Stock Prices The following table shows the average stock price, in dollars, of XYZ Corporation in the given month. Month Stock price January 2011 43.71 February 2011 44.22 March 2011 44.44 April 2011 45.17 May 2011 45.97 a. Find the equation of the regression line. Round the regression coefficients to three decimal places. b. Plot the data points and the regression line. c. Explain in practical terms the meaning of the slope of the regression line. d. Based on the trend of the regression line, what do you predict the stock price to be in January 2012? January 2013?arrow_forwardDemand for Candy Bars In this problem you will determine a linear demand equation that describes the demand for candy bars in your class. Survey your classmates to determine what price they would be willing to pay for a candy bar. Your survey form might look like the sample to the left. a Make a table of the number of respondents who answered yes at each price level. b Make a scatter plot of your data. c Find and graph the regression line y=mp+b, which gives the number of respondents y who would buy a candy bar if the price were p cents. This is the demand equation. Why is the slope m negative? d What is the p-intercept of the demand equation? What does this intercept tell you about pricing candy bars? Would you buy a candy bar from the vending machine in the hallway if the price is as indicated. Price Yes or No 50 75 1.00 1.25 1.50 1.75 2.00arrow_forward
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Price/Book Value Ratio Return on Equity 13.032 1.405 8.305 2.113 6.654 1.239 3.262 2.449 5.291 2.398 7.719 0.353 2.569 7.593 5.104 2.012 4.797 2.182 4.129 1.918 1.549 1.951 5.046 2.417 2.159 3.011 1.725 5.582 4.698 Growth% 6.385 11.846 135.669 12.459 0.073 25.092 14.188 8.804 22.766 38.082 18.985 25.696 24.519 19.666 11.624 22.849 49.965 69.649 36.696 3.819 41.139 9.218 29.108 17.772 25.114 29.295 23.764 31.405 9.497 14.759 18.541 12.026 39.016 14.228 39.439 14.097 27.022 14.841 13.237 20.669 17.311 14.887 15.849 5.601 16.775 11.172 8.401 16.161 18.404 23.973 16.673 14.725 46.605 28.839 52.021arrow_forwardConsider the data in the Excel file Nuclear Power. Use simple linear regression to forecast the data. What would be the forecasts for the next three years? Nuclear Electric Power Production (Billion KWH) Year US Canada France 1980 251.12 35.88 63.42 1981 272.67 37.8 99.24 1982 282.77 36.17 102.6 1983 293.68 46.22 136 1984 327.63 49.26 180.5 1985 383.69 57.1 211.2 1986 414.04 67.23 239.6 1987 455.27 72.89 249.3 1988 526.97 78.18 260.3 1989 529.35 75.35 288.7 1990 576.86 69.24 298.4 1991 612.57 80.68 314.8 1992 618.78 76.55 321.5 1993 610.29 90.08 349.8 1994 640.44 102.4 342 1995 673.4 92.95 358.4 1996 674.73 88.13 377.5 1997 628.64 77.86 375.7 1998 673.7 67.74 368.6 1999 728.25 69.82 374.5 2000 753.89 69.16 394.4 2001 768.83 72.86 400 2002 780.06 71.75 414.9 2003 763.73 71.15 419 2004 788.53 85.87 425.8 2005 781.99 87.44 429 2006 787.22 93.07 427.7arrow_forwardDr. Lillian Fok, a New Orleans psychologist, specializes in treating patients who are agoraphobic (i.e., afraid to leave their homes). The following table indicates how many patients Dr. Fok has seen each year for the past 10 years. It also indicates what the robbery rate was in New Orleans during the same year. Year Number of Patients Robbery Rate per 1,000 Population The simple linear regression equation that shows the best relationship between the number of patients and the robbery rate is (round your responses to three decimal places) where y Number of Patients and x = Robbery Rate. = 1 2 3 4 6 7 36 33 40 41 55 60 58.3 61.1 73.4 75.7 81.1 89.0 101.1 5 40 8 54 94.8 9 58 103.3 10 61 116.2arrow_forward
- am. 13.arrow_forwardA Realtor examines the factors that influence the price of a house in Arlington, Massachusetts. He collects data on recent house sales (Price) and notes each house’s square footage (Sqft) as well as its number of bedrooms (Beds) and number of bathrooms (Baths). Which of the following assumptions is NOT made when estimating regression models? a. There is a linear relationship between the explanatory and response variables b. All of the relevant explanatory variables have been included in the model c. All of the explanatory variables are independent d. All of the explanatory variables are positively correlated with the response variable.arrow_forwardArmer Company is accumulating data to use in preparing its annual profit plan for the coming year. The cost behavior pattern of the maintenance costs must be determined. The accounting staff has suggested the use of linear regression to derive an equation for maintenance hours and costs. Data regarding the maintenance hours and costs for the last year and the results of the regression analysis follow: Month Maintenance Cost Machine Hours Jan. $ 5,050 820 Feb. 3,850 660 Mar. 4,450 740 Apr. 3,670 640 May 5,200 840 June 3,810 650 July 3,880 660 Aug. 5,320 940 Sept. 5,110 830 Oct. 4,900 810 Nov. 4,150 690 Dec. 4,010 680 Sum $ 53,400 8,960 Average $ 4,450 $ 747 Average cost per hour $ 6.00 a (intercept) $ 194.33 b (coefficient) 6.2201 Standard error of the estimate 144.247 R-squared 0.9517 t-value for b 14.030…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY