
(a)
Interpretation:
The most populated rotational level for a sample of
Concept introduction:
An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.

Answer to Problem 14.32E
The most populated rotational level for a sample of
Explanation of Solution
The most populated rotational level is calculated by the formula as shown below.
Where,
•
•
•
The rotational constant is calculated by the formula as shown below.
Where,
•
•
•
The reduced mass is calculated by the formula as shown below.
Where,
•
•
Substitute the value of mass of lithium and hydrogen in equation (3).
Convert
Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).
Substitute the value of rotational constant, Boltzmann’s constant and
Therefore, the most populated rotational level for a sample of
the most populated rotational level for a sample of
(b)
Interpretation:
The most populated rotational level for a sample of
Concept introduction:
An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.

Answer to Problem 14.32E
The most populated rotational level for a sample of
Explanation of Solution
The most populated rotational level is calculated by the formula as shown below.
Where,
•
•
•
The rotational constant is calculated by the formula as shown below.
Where,
•
•
•
The reduced mass is calculated by the formula as shown below.
Where,
•
•
Substitute the value of mass of lithium and hydrogen in equation (3).
Convert
Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).
Substitute the value of rotational constant, Boltzmann’s constant and
Therefore, the most populated rotational level for a sample of
The most populated rotational level for a sample of
(c)
Interpretation:
The most populated rotational level for a sample of
Concept introduction:
An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.

Answer to Problem 14.32E
The most populated rotational level for a sample of
Explanation of Solution
The most populated rotational level is calculated by the formula as shown below.
Where,
•
•
•
The rotational constant is calculated by the formula as shown below.
Where,
•
•
•
The reduced mass is calculated by the formula as shown below.
Where,
•
•
Substitute the value of mass of lithium and hydrogen in equation (3).
Convert
Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).
Substitute the value of rotational constant, Boltzmann’s constant and
Therefore, the most populated rotational level for a sample of
The most populated rotational level for a sample of
Want to see more full solutions like this?
Chapter 14 Solutions
Physical Chemistry
- Part 1. Draw monomer units of the following products and draw their reaction mechanism 1) Bakelite like polymer Using: Resorcinol + NaOH + Formalin 2) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerol 3) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forwardUsing the table of Reactants and Products provided provide the correct letter that corresponds with the Carboxylic acid that is formed in the reaction below. 6 M NaOH Acid-workup WRITE THE CORRECT LETTER ONLY DO NOT WRITE EXTRA WORDS OR PHRASES A) Pool of Reagents for Part B CI B) OH C) E) CI J) racemic F) K) OH N) OH P) G) OH D) HO H) L) M) HO Q) R) CI Aarrow_forwardIn the table below, the exact chemical structures for Methyl salicylate can be represented by the letter WRITE THE CORRECT LETTER ONLY DO NOT WRITE EXTRA WORDS OR PHRASES CI B) A) E) Cl racemic F) J) CI K) N) OH P) Pool of Reagents for Part B OH OH G) L) OH D) HO H) M) HO Q) R) CIarrow_forward
- Draw the stepwise mechanism for the reactionsarrow_forwardPart I. a) Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone b) Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone (3,3-dimethyl-2-butanone) and 2, 3-dimethyl - 1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forward3. The explosive decomposition of 2 mole of TNT (2,4,6-trinitrotoluene) is shown below: Assume the C(s) is soot-basically atomic carbon (although it isn't actually atomic carbon in real life). 2 CH3 H NO2 NO2 3N2 (g)+7CO (g) + 5H₂O (g) + 7C (s) H a. Use bond dissociation energies to calculate how much AU is for this reaction in kJ/mol.arrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forwardShow the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forward
- Draw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forwardDraw stepwise mechanismarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
