(a)
Interpretation:
Whether the molecule hexamethylbenzene,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(b)
Interpretation:
Whether the molecule diacetylene,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(c)
Interpretation:
Whether the molecule cyanide radical,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(d)
Interpretation:
Whether the molecule cyanogen,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(e)
Interpretation:
Whether the molecule sulfur tetrafluoride,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
(f)
Interpretation:
Whether the molecule hydrogen sulphide,
Concept introduction:
Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimensions of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Physical Chemistry
- Curved arrows are used to illustrate the flow of electrons. Follow the curved arrows and draw the structure of the missing reactants, intermediates, or products in the following mechanism. Include all lone pairs. Ignore stereochemistry. Ignore inorganic byproducts. H Br2 (1 equiv) H- Select to Draw Starting Alkene Draw Major Product I I H2O 四: ⑦.. Q Draw Major Charged Intermediate Iarrow_forwardNH (aq)+CNO (aq) → CO(NH2)2(s) Experiment [NH4] (M) [CNO] (M) Initial rate (M/s) 1 0.014 0.02 0.002 23 0.028 0.02 0.008 0.014 0.01 0.001 Calculate the rate contant for this reaction using the data provided in the table.arrow_forward2CIO2 + 20H-1 CIO31 + CIO2 + H2O Experiment [CIO2], M [OH-1], M 1 0.0500 0.100 23 2 0.100 0.100 3 0.100 0.0500 Initial Rate, M/s 0.0575 0.230 0.115 ... Given this date, calculate the overall order of this reaction.arrow_forward
- 2 3 .(be)_[Ɔ+(be)_OI ← (b²)_IƆO+ (be)_I Experiment [1-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 0.000069 4 0.0025 0.0025 0.000140 Calculate the rate constant of this reaction using the table data.arrow_forward1 2 3 4 I(aq) +OCl(aq) → IO¯¯(aq) + Cl¯(aq) Experiment [I-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 Calculate the overall order of this reaction using the table data. 0.0025 0.000069 0.0025 0.000140arrow_forwardH2O2(aq) +3 I¯(aq) +2 H+(aq) → 13(aq) +2 H₂O(l)· ••• Experiment [H2 O2]o (M) [I]o (M) [H+]。 (M) Initial rate (M/s) 1 0.15 0.15 0.05 0.00012 234 0.15 0.3 0.05 0.00024 0.3 0.15 0.05 0.00024 0.15 0.15 0.1 0.00048 Calculate the overall order of this reaction using the table data.arrow_forward
- The U. S. Environmental Protection Agency (EPA) sets limits on healthful levels of air pollutants. The maximum level that the EPA considers safe for lead air pollution is 1.5 μg/m³ Part A If your lungs were filled with air containing this level of lead, how many lead atoms would be in your lungs? (Assume a total lung volume of 5.40 L.) ΜΕ ΑΣΦ = 2.35 1013 ? atoms ! Check your rounding. Your final answer should be rounded to 2 significant figures in the last step. No credit lost. Try again.arrow_forwardY= - 0.039 (14.01) + 0.7949arrow_forwardSuppose 1.76 g of magnesium acetate (Mg (CH3CO2)2) are dissolved in 140. mL of water. Find the composition of the resulting electrolyte solution. In particular, list the chemical symbols (including any charge) of each dissolved ion in the table below. List only one ion per row. mEq Then, calculate the concentration of each ion in dwrite the concentration in the second column of each row. Be sure you round your answers to the L correct number of significant digits. ion Add Row mEq L x 5arrow_forward
- A pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows.arrow_forwardNonearrow_forwardNonearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning