OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 125QRT
Interpretation Introduction
Interpretation:
The volume of carbon dioxide gas generated by the reaction of one tsp of baking soda with stomach acids has to be calculated. The stomach of the person has ruptured from the volume of carbon dioxide gas generated or not has to be determined.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A person claimed that his stomach ruptured when he took a teaspoonful of baking soda in a glass of water to relieve heartburn after a full meal (½ tsp = 2.5 g NaHC03). Assume that the pH of stomach acid is 1 and that the stomach had a volume of 1 L when expanded fully. Body temperature is 37°C. Calculate the volume of carbon dioxide gas generated by the reaction of baking soda with stomach acids. Might his stomach have ruptured from this volume of CO2?
What is the pH of a solution prepared by mixing 55.00 mL of 0.10 M methylamine, CH3NH2, with 15.00 mL of 0.10 M methylammonium chloride, CH3NH3CI? Assume that the volume of
the solutions are additive and that Kp = 4.4 x 104 for methylamine.
Determine the pH of a solution that is prepared by dissolving 8 g of Ba(OH)2 in 3.8 L water at 25°C. Assume that the volume of the solvent does not change upon addition of the solute. Atomic Weights: Ba = 137.3 g/mol; O = 16.00 g/mol; H = 1.008 g/mol.
Chapter 14 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 14.1 - Identify each molecule or ion as a Brnsted-Lowry...Ch. 14.1 - Using Le Chatelier’s Principle
Use Le Chatelier’s...Ch. 14.1 - Prob. 14.3ECh. 14.1 - Complete the table.
Ch. 14.1 - Prob. 14.4ECh. 14.1 - Prob. 14.5ECh. 14.2 - Prob. 14.6CECh. 14.2 - Prob. 14.7ECh. 14.3 - Prob. 14.2PSPCh. 14.3 - Prob. 14.3PSP
Ch. 14.4 - Calculate the pH of a 0.040-M NaOH solution.
Ch. 14.4 - In a hospital laboratory the pH of a bile sample...Ch. 14.4 - Prob. 14.8CECh. 14.4 - Prob. 14.9ECh. 14.4 - Prob. 14.10ECh. 14.5 - Write the ionization equation and ionization...Ch. 14.5 - Write the ionization equation and the Kb...Ch. 14.5 - Prob. 14.11CECh. 14.5 - Prob. 14.12CECh. 14.5 - Prob. 14.13ECh. 14.6 - Prob. 14.14CECh. 14.6 - Prob. 14.15CECh. 14.6 - Prob. 14.16CECh. 14.6 - Prob. 14.17CECh. 14.6 - Prob. 14.18CECh. 14.7 - Lactic acid is a monoprotic acid that occurs...Ch. 14.7 - Prob. 14.9PSPCh. 14.7 - Prob. 14.19ECh. 14.7 - Prob. 14.10PSPCh. 14.7 - Prob. 14.20ECh. 14.8 - Prob. 14.11PSPCh. 14.8 - Prob. 14.21CECh. 14.8 - Prob. 14.12PSPCh. 14.8 - Prob. 14.22ECh. 14.8 - Prob. 14.23CECh. 14.8 - Prob. 14.24CECh. 14.9 - Predict whether each of these is a Lewis acid or a...Ch. 14.9 - Prob. 14.26ECh. 14.9 - Prob. 14.27ECh. 14.10 - Prob. 14.28ECh. 14.10 - Prob. 14.13PSPCh. 14.10 - Prob. 14.29ECh. 14.10 -
Calculate the pH of 5.2-M aqueous sodium...Ch. 14 - Lactic acid, CH3CH(OH)COOH, is a weak monoprotic...Ch. 14 - Define a Brnsted-Lowry acid and a Brnsted-Lowry...Ch. 14 - Prob. 2QRTCh. 14 - Prob. 3QRTCh. 14 - Prob. 4QRTCh. 14 - Prob. 5QRTCh. 14 - Prob. 6QRTCh. 14 - Prob. 7QRTCh. 14 - Prob. 8QRTCh. 14 - Write a chemical equation to describe the proton...Ch. 14 - Write a chemical equation to describe the proton...Ch. 14 - Prob. 11QRTCh. 14 - Prob. 12QRTCh. 14 - Prob. 13QRTCh. 14 - Prob. 14QRTCh. 14 - Prob. 15QRTCh. 14 - Prob. 16QRTCh. 14 - Prob. 17QRTCh. 14 - Prob. 18QRTCh. 14 - Prob. 19QRTCh. 14 - Prob. 20QRTCh. 14 - Prob. 21QRTCh. 14 - Prob. 22QRTCh. 14 - Prob. 23QRTCh. 14 - Formic acid, HCOOH, is found in ants. Write a...Ch. 14 - Milk of magnesia, Mg(OH)2, has a pH of 10.5....Ch. 14 - A sample of coffee has a pH of 4.3. Calculate the...Ch. 14 - Calculate the pH of a solution that is 0.025-M in...Ch. 14 - Calculate the pH of a 0.0013-M solution of HNO3....Ch. 14 - Prob. 29QRTCh. 14 - Prob. 30QRTCh. 14 - A 1000.-mL solution of hydrochloric acid has a pH...Ch. 14 - Prob. 32QRTCh. 14 - Prob. 33QRTCh. 14 - Prob. 34QRTCh. 14 - Figure 14.3 shows the pH of some common solutions....Ch. 14 - Figure 14.3 shows the pH of some common solutions....Ch. 14 - The measured pH of a sample of seawater is 8.30....Ch. 14 - Prob. 38QRTCh. 14 - Valine is an amino acid with this Lewis structure:...Ch. 14 - Leucine is an amino acid with this Lewis...Ch. 14 - Prob. 41QRTCh. 14 - Prob. 42QRTCh. 14 - Prob. 43QRTCh. 14 - Prob. 44QRTCh. 14 - Prob. 45QRTCh. 14 - Prob. 46QRTCh. 14 - Prob. 47QRTCh. 14 - Prob. 48QRTCh. 14 - Prob. 49QRTCh. 14 - Prob. 50QRTCh. 14 - Prob. 51QRTCh. 14 - Prob. 52QRTCh. 14 - Prob. 53QRTCh. 14 - Prob. 54QRTCh. 14 -
A 0.015-M solution of cyanic acid has a pH of...Ch. 14 - Prob. 56QRTCh. 14 -
The pH of a 0.10-M solution of propanoic acid,...Ch. 14 - Prob. 58QRTCh. 14 - Prob. 59QRTCh. 14 - Prob. 60QRTCh. 14 - Prob. 61QRTCh. 14 - Amantadine, C10H15NH2, is a weak base used in the...Ch. 14 - Prob. 63QRTCh. 14 -
Lactic acid, C3H6O3, occurs in sour milk as a...Ch. 14 - Prob. 65QRTCh. 14 - Complete each of these reactions by filling in the...Ch. 14 - Complete each of these reactions by filling in the...Ch. 14 - Predict which of these acid-base reactions are...Ch. 14 - Predict which of these acid-base reactions are...Ch. 14 - Prob. 70QRTCh. 14 - Prob. 71QRTCh. 14 - Prob. 72QRTCh. 14 - Prob. 73QRTCh. 14 - Prob. 74QRTCh. 14 - Prob. 75QRTCh. 14 - Prob. 76QRTCh. 14 - Prob. 77QRTCh. 14 - Prob. 78QRTCh. 14 - Prob. 79QRTCh. 14 - Prob. 80QRTCh. 14 - Prob. 81QRTCh. 14 - Trimethylamine, (CH3)3N, reacts readily with...Ch. 14 - Prob. 83QRTCh. 14 - Prob. 84QRTCh. 14 - Prob. 85QRTCh. 14 - Prob. 86QRTCh. 14 - Common soap is made by reacting sodium carbonate...Ch. 14 - Prob. 88QRTCh. 14 - Prob. 89QRTCh. 14 - Prob. 90QRTCh. 14 - Prob. 91QRTCh. 14 - Prob. 92QRTCh. 14 - Prob. 93QRTCh. 14 -
Several acids and their respective equilibrium...Ch. 14 - Prob. 95QRTCh. 14 - Prob. 96QRTCh. 14 - Does the pH of the solution increase, decrease, or...Ch. 14 - Does the pH of the solution increase, decrease, or...Ch. 14 - Prob. 99QRTCh. 14 - Prob. 100QRTCh. 14 - Prob. 101QRTCh. 14 - Prob. 102QRTCh. 14 - Prob. 103QRTCh. 14 - Prob. 104QRTCh. 14 - Prob. 105QRTCh. 14 - Prob. 106QRTCh. 14 - When all the water is evaporated from a sodium...Ch. 14 - Prob. 108QRTCh. 14 - Prob. 109QRTCh. 14 - Prob. 110QRTCh. 14 - Prob. 111QRTCh. 14 - Prob. 112QRTCh. 14 - Prob. 113QRTCh. 14 - Prob. 114QRTCh. 14 - Prob. 115QRTCh. 14 - Prob. 116QRTCh. 14 - Home gardeners spread aluminum sulfate powder...Ch. 14 - Prob. 118QRTCh. 14 - Prob. 119QRTCh. 14 - Prob. 120QRTCh. 14 - Prob. 121QRTCh. 14 - Prob. 122QRTCh. 14 - Prob. 123QRTCh. 14 - Prob. 124QRTCh. 14 - Prob. 125QRTCh. 14 - A chilled carbonated beverage is opened and warmed...Ch. 14 - Prob. 127QRTCh. 14 -
Explain why BrNH2 is a weaker base than ammonia,...Ch. 14 - Prob. 129QRTCh. 14 - Prob. 130QRTCh. 14 - At 25 C, a 0.10% aqueous solution of adipic acid,...Ch. 14 - Prob. 132QRTCh. 14 - Prob. 133QRTCh. 14 - Prob. 134QRTCh. 14 - Prob. 135QRTCh. 14 - Prob. 14.ACPCh. 14 - Develop a set of rules by which you could predict...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Estimate the pH that results when the following two solutions are mixed. a) 50 mL of 0.3 M CH3COOH and 50 mL of 0.4 M KOH b) 100 mL of 0.3 M CH3COOH and 50 mL of 0.4 M NaOH c) 150 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2 d) 200 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2arrow_forwardFor conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forwardWhat is the pH of a solution obtained by adding 13.0 g of NaOH to 795 mL of a 0.200 M solution of Sr(OH)2? Assume no volume change after NaOH is added.arrow_forward
- The pH of a solution of Ba(OH)2 is 10.66 at 25 . What is the hydroxide ion concentration in the solution? If the solution volume is 125 mL, what mass of Ba(OH)2 must have been dissolved?arrow_forwardDoes the pH of the solution increase, decrease, or stay the same when you (a) Add solid sodium oxalate, Na2C2O4, to 50.0 mL of 0.015-M oxalic acid? (b) Add solid ammonium chloride to 100. mL of 0.016-M HCl? (c) Add 20.0 g NaCl to 1.0 L of 0.012-M sodium acetate, NaCH3COO?arrow_forwardLactic acid, C3H6O3, occurs in sour milk as a result of the metabolism of certain bacteria. Calculate the pH of a solution of 56. mg lactic acid in 250. mL water. Ka for D-lactic acid is 1.5 × 10−4.arrow_forward
- Malic acid is a weak diprotic organic acid with Ka1 = 4.0 104 and Ka2 = 9.0 105. a Letting the symbol H2A represent malic acid, write the chemical equations that represent Ka1 and Ka2. Write the chemical equation that represents Ka1 Ka2. b Qualitatively describe the relative concentrations of H2A, HA, A2, and H3O+ in a solution that is about one molar in malic acid. c Calculate the pH of a 0.0175 M malic acid solution and the equilibrium concentration of [H2A]. d What is the A2 concentrationin in solutions b and c?arrow_forwardA chemist wanted to determine the concentration of a solution of lactic acid, HC3H5O3. She found that the pH of the solution was 2.60. What was the concentration of the solution? The Kd of lactic acid is 1.4 104.arrow_forwardWrite an equation for each of the following buffering actions. a. the response of a HPO42/PO43 buffer to the addition of OH ions b. the response of a HF/F buffer to the addition of OH ions c. the response of a HCN/CN buffer to the addition of H3O+ ions d. the response of a H3PO4/H2PO4 buffer to the addition of H3O+ ionsarrow_forward
- Two strategies are also followed when solving for the pH of a base in water. What is the strategy for calculating the pH of a strong base in water? List the strong bases mentioned in the text that should be committed to memory. Why is calculating the pH of Ca(OH)2 solutions a little more difficult than calculating the pH of NaOH solutions? Most bases are weak bases. The presence of what element most commonly results in basic properties for an organic compound? What is present on this element in compounds that allows it to accept a proton? Table 13-3 and Appendix 5 of the text list Kb values for some weak bases. What strategy is used to solve for the pH of a weak base in water? What assumptions are made when solving for the pH of weak base solutions? If the 5% rule fails, how do you calculate the pH of a weak base in water?arrow_forwardThe pigment cyanidin aglycone is one of the anthocyanin molecules that gives red cabbage (Brassica oleracea var. capitata f. rubra) its characteristic red coloration. Many chemistry students have used this red cabbage indicator to study acid-base chemistry. Estimate tire pH range at which cyanidin agly-cone shows a color change. Anth-H(aq) Anth(aq) + H+ (aq) Ka = 1.3 107arrow_forwardWhat is the concentration of hydroxide ion in a 0.060 M aqueous solution of methylamine. CH3NH2? What is the pH?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY