Concept explainers
Interpretation:
The most common oxidizing agents and reducing agents, along with their respective reactions, are to be discussed.
Concept Introduction:
Oxidation is the addition of an electronegative element and the removal of an electropositive element in a
Reduction is the addition of an electropositive element and the removal of an electronegative element in a chemical reaction.
A chemical reaction in which oxidation process and reduction process takes place simultaneously is called a redox reaction.
An oxidizing agent is a substance that has the capacity to oxidize another substance, and to get reduced, in a chemical reaction.
A reducing agent is a substance that has the capacity to reduce another substance, and to get oxidized, in a chemical reaction.
Answer to Problem 10E
Solution:
The most common oxidizing agents are oxygen, chlorine and hydrogen peroxide. Oxygen is used as an oxidizing agent in redox reactions, such as the combustion of gasoline in automobiles and the burning of wood in the presence of fire. Chlorine is used as an oxidizing agent in the formation of bleaching powder, which is used as a disinfectant in drinking water.
The most common reducing agents are carbon, hydrogen and carbon monoxide. Hydrogen is used as a reducing agent in the reduction of nitrogen into ammonia. Carbon is a reducing agent; it is used in the reduction of metal ores into their respective metals. Carbon monoxide is a reducing agent. It is used in the reduction of iron oxide into iron.
Explanation of Solution
An oxidizing agent is a substance that tends to gain electrons in a redox reaction. It oxidizes the other substance and gets reduced in a redox reaction. It is also known as the electron acceptor and the oxidation state increases. The most common oxidizing agents are oxygen, chlorine, iodine and hydrogen peroxide. Chlorine is used as an oxidizing agent for the production of bleaching powder. It is also used as anantiseptic.
The equation for the reaction of
An oxidizing agent gains electron easily while a reducing agent loses electrons easily in a redox reaction.
In this chemical reaction, the oxidation state of
Oxygen is used as an oxidizing agent for the oxidation of sugar in respiration.
The chemical equation for the respiration reaction is as follow:
An oxidizing agent gains electron easily while a reducing agent loses electrons easily in a redox reaction.
In this chemical reaction, the oxidation state of
In this chemical reaction, the oxidation state of
A reducing agent is a substance that tends to lose electrons in an oxidation-reduction reaction. It reduces the other substance and gets oxidized in a redox reaction. It is also known as the electron donor and the oxidation state of the substances decreases.
The common reducing agents are hydrogen, carbon monoxide and carbon.
Hydrogen is used as a reducing agent. It is used for the reduction of nitrogen into ammonia as follow:
An oxidizing agent gains electron easily while a reducing agent loses electrons easily in a redox reaction.
In this chemical reaction, the oxidation state of
In this chemical reaction, the oxidation state of
Carbon monoxide is used as a reducing agent. It is used for the reduction of iron ore into iron.
The equation for the reaction of
An oxidizing agent gains electron easily while a reducing agent loses electrons easily in a redox reaction.
In this chemical reaction, the oxidation state of
In this chemical reaction, the oxidation state of
Carbon is used as a reducing agent. It is used for the reduction of nickel oxide into nickel.
The equation for the reaction of
Oxidation is the loss of electrons and gain of oxygen in a chemical reaction. Reduction is the gain of electrons and loss of oxygen in a chemical reaction.
In this chemical reaction, the oxidation state of
In this chemical reaction, the oxidation state of
Oxygen, chlorine and hydrogen peroxide are the most common oxidizing agents, whereas the most common reducing agents are hydrogen, carbon monoxide and carbon.
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry In Focus
- Write the net ionic equation for the reaction, if any, that occurs on mixing (a) solutions of sodium hydroxide and magnesium chloride. (b) solutions of sodium nitrate and magnesium bromide. (c) magnesium metal and a solution of hydrochloric acid to produce magnesium chloride and hydrogen. Magnesium metal reacting with HCl.arrow_forwardGold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen. 4 Au(s) + 8 NaCN(aq) + O2(g) + 2 H2O() 4 NaAu(CN)2(aq) + 4 NaOH(aq) (a) Name the oxidizing and reducing agents in this reaction. What has been oxidized, and what has been reduced? (b) If you have exactly one metric ton (1 metric ton = 1000 kg) of gold-bearing rock, what volume of 0.075 M NaCN, in liters, do you need to extract the gold if the rock is 0.019% gold?arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forward
- The Toliens test for the presence of reducing sugars (say, in a urine sample) involves treating the sample with silver ions in aqueous ammonia. The result is the formation of a silver mirror within the reaction vessel if a reducing sugar is present. Using glucose, C6H12O6, to illustrate this test, the oxidation-reduction reaction occurring is C6H12O6 (aq) + 2 Ag+(aq) + 2OH(aq) C6H12O7(aq) + 2 Ag(s) + H2O() What has been oxidized, and what has been reduced? What is the oxidizing agent, and what is the reducing agent? Tolien's test. The reaction of silver ions with a sugar such as glucose produces metallic silver. (a) The set-up for the reaction. (b) The silvered test tubearrow_forwardWhich two of the following reactions are oxidation-reduction reactions? Explain your answer briefly. Classify the remaining reaction. (a) CdC12(aq) + Na2S(aq) CdS(s) + 2 NaCl(aq) (b) 2 Ca(s) + O2(g) 2 CaO(s) (c) 4 Fe(OH)2(s) + 2 H2O() + O2(g) 4 Fe(OH)3(s)arrow_forwardFour metals, A, B, C, and D, exhibit the following properties: (a) Only A and C react with 1.0 M hydrochloric acid to give H2(g). (b) When C is added to solutions of the ions of the other metals, metallic B, D, and A are formed. (c) Metal D reduces Bn+ to give metallic B and Dn+. Based on this information, arrange the four metals in order of increasing ability to act as reducing agents.arrow_forward
- Which of the following must be an oxidation—reduction reaction? Explain your answer, and include an example oxidation—reduction reaction for all that apply. l type='a'> A metal reacts with a nonmetal. i>A precipitation reaction. i>An acid—base reaction.arrow_forward4.112 A metallurgical firm wishes to dispose of 1300 gallons of waste sulfuric acid whose molarity is 1.37 M. Before disposal, it will be reacted with calcium hydroxide (slaked lime), which costs $0.23 per pound. (a) Write the balanced chemical equation for this process. (b) Determine the cost that the firm will incur from this use of slaked lime.arrow_forwardConsider four beakers. Beaker A has an aqueous solution of NaOH in which the OH- ions are represented by blue circles. Beaker B has a weak acid; HX is represented by red circles. Beaker C has a weak acid; H2X is represented by green circles. Beaker D has a weak acid; H3X is represented by yellow circles. X- ions are represented by triangles. Match the pictorial representations with the reactions given below. (a) HX(aq)+OH(aq) X(aq)+H2O(b) H2X(aq)+2OH(aq) X(aq)+2H2O(c) H3X(aq)+3OH(aq) X(aq)+3H2Oarrow_forward
- You have two 500.0-mL aqueous solutions. Solution A is a solution of a metal nitrate that is 8.246% nitrogen by mass. The ionic compound in solution B consists of potassium, chromium, and oxygen; chromium has an oxidation state of + 6 and there are 2 potassiums and 1 chromium in the formula. The masses of the solutes in each of the solutions are the same. When the solutions are added together, a blood-red precipitate forms. After the reaction bas gone to completion, you dry the solid and find that it has a mass of 331.8 g. a. Identify the ionic compounds in solution A and solution B. b. Identify the blood-red precipitate. c. Calculate the concentration (molarity) of all ions in the original solutions. d. Calculate the concentration (molarity) of all ions in the final solution.arrow_forwardClassify each of the following half-reaction equations as oxidation or reduction half-reactions: a ZnZn2++2e b 2H++2eH2 c Fe2+Fe3++e d NO+2H2ONO3+4H++3earrow_forwardBalance each of the following equations, and classify them as precipitation, acid-base, gas-forming, or oxidation-reduction reactions. Show states for reactants and products (s, , g, aq). (a) CuCl2 + H2S CuS + HCl (b) H3PO4 + KOH H2O + K3PO4 (c) Ca +HBr H2 + CaBr2 (d) MgC12 + NaOH Mg(OH)2 + NaClarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning