Concept explainers
Average Cost A clothing manufacturer finds that the cost of producing x shirts is 500 + 6x + 0.01x2 dollars.
- (a) Explain why the average cost per shirt is given by the rational expression
- (b) Complete the table by calculating the average cost per shirt for the given values of x.
x | Average cost |
10 | |
20 | |
50 | |
100 | |
200 | |
500 | |
1000 |
(a)
To explain: The average cost per shirt is given by rational expression
Explanation of Solution
The cost of producing x shirts is
The result obtained by diving the sum of all given quantities by the total number of quantities is known as average.
The average cost of one shirt is,
Thus, the average cost per shirt is given by rational expression
(b)
To find: Complete the table for average cost of shirt for different values of x.
Answer to Problem 102E
The table for average cost per shirt for different value of x is,
x | Average Cost |
10 | 56.1 |
20 | 31.2 |
50 | 16.5 |
100 | 12 |
200 | 10.5 |
500 | 12 |
1000 | 16.5 |
Explanation of Solution
Given:
The different values of x are 10, 20, 50, 100, 200, 500 and 1000.
Calculation:
From part (a), the average cost per shirt is,
Substitute 10 for x in equation (1).
The average cost is 56.1 dollars for 10 shirts.
Substitute 20 for x into equation (1).
The average cost is 31.2 dollars for 20 shirts.
Substitute 50 for x into equation (1).
The average cost is 16.5 dollars for 50 shirts.
Substitute 100 for x into equation (1).
The average cost is 12 dollars for 100 shirts.
Substitute 200 for x into equation (1).
The average cost is 10.5 dollars for 200 shirts.
Substitute 500 for x into equation (1).
The average cost is 12 dollars for 500 shirts.
Substitute 1000 for x into equation (1).
The average cost is 16.5 dollars for 1000 shirts.
Thus, the table for average cost per shirt for different value of x is,
x | Average Cost |
10 | 56.1 |
20 | 31.2 |
50 | 16.5 |
100 | 12 |
200 | 10.5 |
500 | 12 |
1000 | 16.5 |
Chapter 1 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- Solve this differential equation: dy 0.05y(900 - y) dt y(0) = 2 y(t) =arrow_forwardSuppose that you are holding your toy submarine under the water. You release it and it begins to ascend. The graph models the depth of the submarine as a function of time. What is the domain and range of the function in the graph? 1- t (time) 1 2 4/5 6 7 8 -2 -3 456700 -4 -5 -6 -7 d (depth) -8 D: 00 t≤ R:arrow_forward0 5 -1 2 1 N = 1 to x = 3 Based on the graph above, estimate to one decimal place the average rate of change from x =arrow_forwardComplete the description of the piecewise function graphed below. Use interval notation to indicate the intervals. -7 -6 -5 -4 30 6 5 4 3 0 2 1 -1 5 6 + -2 -3 -5 456 -6 - { 1 if x Є f(x) = { 1 if x Є { 3 if x Єarrow_forwardComplete the description of the piecewise function graphed below. 6 5 -7-6-5-4-3-2-1 2 3 5 6 -1 -2 -3 -4 -5 { f(x) = { { -6 if -6x-2 if -2< x <1 if 1 < x <6arrow_forwardLet F = V where (x, y, z) x2 1 + sin² 2 +z2 and let A be the line integral of F along the curve x = tcost, y = t sint, z=t, starting on the plane z = 6.14 and ending on the plane z = 4.30. Then sin(3A) is -0.598 -0.649 0.767 0.278 0.502 0.010 -0.548 0.960arrow_forwardLet C be the intersection of the cylinder x² + y² = 2.95 with the plane z = 1.13x, with the clockwise orientation, as viewed from above. Then the value of cos (₤23 COS 2 y dx xdy+3 z dzis 3 z dz) is 0.131 -0.108 -0.891 -0.663 -0.428 0.561 -0.332 -0.387arrow_forward2 x² + 47 The partial fraction decomposition of f(x) g(x) can be written in the form of + x3 + 4x2 2 C I where f(x) = g(x) h(x) = h(x) + x +4arrow_forwardThe partial fraction decomposition of f(x) 4x 7 g(x) + where 3x4 f(x) = g(x) = - 52 –10 12x237x+28 can be written in the form ofarrow_forward1. Sketch the following piecewise function on the graph. (5 points) x<-1 3 x² -1≤ x ≤2 f(x) = = 1 ४ | N 2 x ≥ 2 -4- 3 2 -1- -4 -3 -2 -1 0 1 -1- --2- -3- -4- -N 2 3 4arrow_forward2. Let f(x) = 2x² + 6. Find and completely simplify the rate of change on the interval [3,3+h]. (5 points)arrow_forward(x)=2x-x2 2 a=2, b = 1/2, C=0 b) Vertex v F(x)=ax 2 + bx + c x= Za V=2.0L YEF(- =) = 4 b (글) JANUARY 17, 2025 WORKSHEET 1 Solve the following four problems on a separate sheet. Fully justify your answers to MATH 122 ล T earn full credit. 1. Let f(x) = 2x- 1x2 2 (a) Rewrite this quadratic function in standard form: f(x) = ax² + bx + c and indicate the values of the coefficients: a, b and c. (b) Find the vertex V, focus F, focal width, directrix D, and the axis of symmetry for the graph of y = f(x). (c) Plot a graph of y = f(x) and indicate all quantities found in part (b) on your graph. (d) Specify the domain and range of the function f. OUR 2. Let g(x) = f(x) u(x) where f is the quadratic function from problem 1 and u is the unit step function: u(x) = { 0 1 if x ≥0 0 if x<0 y = u(x) 0 (a) Write a piecewise formula for the function g. (b) Sketch a graph of y = g(x). (c) Indicate the domain and range of the function g. X фирм where u is the unit step function defined in problem 2. 3. Let…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning