
(a)
To verify: The triangle
(a)

Explanation of Solution
Given information:
The figure,
Formula used:
Converse of Pythagoras theorem states that if the sum of squares of two sides of a triangle is equal to the square of longest side of the triangle, then the triangle is a right triangle.
Distance formula between two points
Proof:
Consider the given figure,
In the above figure, the coordinates of the vertices of the triangle ABC are
Recall that the distance formula between two points
So, length of AB will be calculated as.
Now, the length of BC will be calculated as,
Length of AC will be calculated s,
Now, calculate the sum of squares of AB and BC as,
Recall the converse of Pythagoras theorem if the sum of squares of two sides of a triangle is equal to the square of longest side of the triangle, then the triangle is a right triangle.
Here, square of longest side i.e. AC is equal to the sum of squares of other two sides, i.e. AB and BC, so, the given triangle ABC is a right triangle.
Thus, using converse of Pythagoras theorem it is proved that the triangle ABC is a right triangle.
(b)
To calculate: The area of triangle ABC.
(b)

Answer to Problem 39E
The area of triangle ABC is
Explanation of Solution
Given information:
The figure,
Formula used:
Area of a triangle is half into the product of its base and height. So, if b is the base and h is the height of the triangle, then area of triangle is expressed as,
Calculation:
Consider the given figure,
In (a) part, lengths of sides of triangle are calculated as,
Length of AB
Length of BC
Length of AC
Since, AC is longest, so, it is hypotenuse and AB is shortest, so, AB is the perpendicular (height) and BC is base of the triangle.
Recall area of a triangle is half into the product of its base and height. So, if b is the base and h is the height of the triangle, then area of triangle is expressed as,
Apply it,
Simplify it further as,
Thus, area of the triangle ABC is
Chapter 1 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- An engineer is designing a pipeline which is supposed to connect two points P and S. The engineer decides to do it in three sections. The first section runs from point P to point Q, and costs $48 per mile to lay, the second section runs from point Q to point R and costs $54 per mile, the third runs from point R to point S and costs $44 per mile. Looking at the diagram below, you see that if you know the lengths marked x and y, then you know the positions of Q and R. Find the values of x and y which minimize the cost of the pipeline. Please show your answers to 4 decimal places. 2 Miles x = 1 Mile R 10 miles miles y = milesarrow_forwardAn open-top rectangular box is being constructed to hold a volume of 150 in³. The base of the box is made from a material costing 7 cents/in². The front of the box must be decorated, and will cost 11 cents/in². The remainder of the sides will cost 3 cents/in². Find the dimensions that will minimize the cost of constructing this box. Please show your answers to at least 4 decimal places. Front width: Depth: in. in. Height: in.arrow_forwardFind and classify the critical points of z = (x² – 8x) (y² – 6y). Local maximums: Local minimums: Saddle points: - For each classification, enter a list of ordered pairs (x, y) where the max/min/saddle occurs. Enter DNE if there are no points for a classification.arrow_forward
- Suppose that f(x, y, z) = (x − 2)² + (y – 2)² + (z − 2)² with 0 < x, y, z and x+y+z≤ 10. 1. The critical point of f(x, y, z) is at (a, b, c). Then a = b = C = 2. Absolute minimum of f(x, y, z) is and the absolute maximum isarrow_forwardThe spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





